1. TENSORS ON VECTOR SPACES
Let V be a finite dimensional vector space over R.

Definition 1.1. A tensor of type (k,l) on V is a map
T: VX..xVxV*x...xV*=R

~
k times [ times

which is linear in every variable.

Example 1.2.

e Let v € V be a vector. Then v defines a tensor T, of type (0, 1) with
the map T;,: V* — R given by T,,(f) = f(v). The map v — T, gives
a linear isomorphism from V onto (V*)* = space of all tensors of
type (0,1).

e Let (-,-) be an inner product on V. Then it is a tensor of type (2,0).

e LetV=R"andletT: V x...xV — Rbegivenby T'(v1,...,v,) =

—_———

n times
det A where A is the n x n matrix with columns vq,...,v,. Then T

is a tensor of type (n,0).

From now on we will only consider tensors of type (k,0) which we’ll refer
to as simply k-tensors. Let T#(V) be the set of all k tensors on V. It’s
obvious that 7%(V) is a vector space and T(V) = V*. Also T°(V) = R.

Definition 1.3. Let V, W be vector spaces and let L: V — W be a linear
map. Let T be a k-tensor on W. Let L*(T): V x...xV — R be defined
N————

k times

by the formula
L*(T)(Ulv cee 7Uk) = T(L(Ul)v cee 7L(Uk:))

Then it’s immediate that L*(T") is a k-tensor on V which we’ll call the
pullback of T by L.

It’s easy to see that L*: T*(W) — T*(V) is linear.

Definition 1.4. Let T € T*(V), S € TY(V)). We define their tensor product
T®S € TH(V) by the formula

T®S(is s vkit) = T(01,0 0o, vk) - S(Vkg1y - Vkt)
It’s obvious that T'® S is a tensor. The following properties of tensor
product are obvious from the definition
e Tensor product is associative: (T ® S)@ R=T ® (S ® R)
e tensor product is linear in both variables: (MT7 + A2Th) ® R =
M1 ® R+ AoT5 ® R and the same holds for R.
e tensor product commutes with pullback, i.e. if L: V' — W is a linear
map between vector spaces and T, S are tensors on W then
LT ®S) = L(T)  L*(S)
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Let us construct a basis of 7%(V) and compute its dimension. Let
e1,...,en be a basis of V and let e',...e" be the dual basis of V*, i.e.

¢'(ej) = dij

For any multi-index I = (iy,...,4;) with 1 < i; < n define ¢’ as ¢! =
e ®...®e"%. Also, we will denote the k-tuple (e;,,...e;, ) by er.
It’s immediate from the definition that

0 o es) =01y = {; 2

For example e! ® 62(62, e1) = 61(62) : 62(61) =0.

Lemma 1.5. Let T,S € TF(V) then T = S iff T(e;) = S(er) for any
multi-index I = (i1, ... 1x).

Proof. This follows immediately from multi-linearity of 7" and S. U

Lemma 1.6. The set {¢I}I:(i1,.. is a basis of T*(V). In particular,

dim 7*(V) = nk

Proof. Let us first check linear independence of ¢!’s. Suppose A ¢l =0.
Let J = (j1,...,Jjk) be a multi-index of length k. Using (1) we obtain

0=0_Ao)(es) =D Mg (es) =D Mibry= Ay
i i T

k)

Since .J was arbitrary this proves linear independence of {¢’} T=(i1,0nnsin) -

Let us show that they span 7%(V).

Let T € TH(V). Let S = > ;T(er)¢’. Then S belongs to the span of
{¢'};. For any J we have that S(e;) = > ;T(er)d(es) = >, T(er)drs =
T(ey). Therefore, T'= S by Lemma 1.5 and hence T" belongs to the span of

{o'}r.
O

2. ALTERNATING TENSORS

Definition 2.1. Let V' be a finite dimensional vector space. A k-tensor T
on V is called alternating if for any v1,...,vx and any 1 < i < 5 < k we
have

T(’Ul,...,vi,...,?}j,...,Uk):—T(Ul,...,Uj,...,?}i,...,’l}k)

Example 2.2.

e Any l-tensor on V is alternating.

e The determinant tensor defined in Example 1.2 is alternating.

e More generally, let eq,...e, be a basis of V. Let I = (i1,...,i) be
a k-multi-index. Define a k tensor e! as follows.
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Let v1,...,v; € V. Let A be the n x k matrix whose i-th column
is given by the coordinates of v; with respect to the basis eq,...e,.
Let A be the k x k matrix made of rows iy, ...,i; of A.

Define e by the formula

ef(vy,...,v) = det A!
It’s immediate that e is alternating because the determinant of a
matrix changes sign if two of its columns are switched. It’s also
obvious that if I has some repeating indices then e/ = 0.

The following properties of alternating tensors are immediate from the
definition

e Let A*(V) be the set of all alternating k tensors on V. Then A*(V)
is a vector subspace of 7%(V), i.e. a linear combination of alternating
tensors is alternating.

o If L: V — W is linear and w € A¥(W) then L*(w) € A*(W)
Remark 2.3. In the notations of the book A*(V) = AF(V*).

Let o0 € S;, be a permutation and let T € T%(A) be a k-tensor. Define °T
by
JT('l}l, ce ,Uk) = T(va(l)? ey Ua(k))
The following properties are immediate from the definition
o T(MT1 + XoTo) = MT1 + AT
° o‘TT — U(TT)
Lemma 2.4. Let T € T*(V). Then TFAE
(i) T(v1,...,v5) =0 if v; = vj for some i #j
(i1) T is alternating;
(11i) T(vi,...,v) =0 if v1,...,vx are linearly dependent.
(iv) °T =signo - T for any o € Sk.
Let eq,...e, be a basis of V. Let I = (i1,...4),J = (j1,...,Jk) be two

multi-indices with s #£ iy, js # j; for all s # ¢.
It’s easy to see from the definition of e/ that el(e;) = 0 if {i1,...,ip} #

{j1,...,jx} and e (e;y) = signo if {i1,...,ix} = {j1,...,jx} and o € S} is
the unique permutation satisfying I = o(J) = (jo(1)s - - - Jo(k))

In particular, if I = (i1 < iy <...<ig),J = (j1 < j2 < ... < jg) then
(2) el(es) =01y
Lemma 2.5. Let o, € A¥(V). Then a = B iff ale;) = Bler) for any
I:(i1<i2<...<ik).

Lemma 2.6. The set {61}1=(11<z‘2<...<ik) is a basis of A¥(V). In particular
dim A¥(V) = (}) for k < n and dim A*(V) =0 if k > n.

Proof. The proof is the same as the proof of Lemma 1.6 but using Lemma 2.5
instead of Lemma 1.5 and (2) instead of (1). O
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Example 2.7. Any element of A*(V) can be written as a linear combination
of the standard basis {¢'} of T7#(V). For example, if n = dimV = 4 then
eB=el@ed —eB@el =¢l3 — 3L,

Lemma 2.8. Let L: V — V be a linear map and let A = [L] be the matriz
of L with respect to the basis e1,...,e, of V. Then for any w € A™(V) we
have that L*(w) = (det A)w.

n

Proof. By Lemma 2.6, A"(V) is 1-dimensional with basis given by e!2+7,
Therefore, it’s enough to prove the lemma, for w = e'?+".

We have L*(lQn) — )\12...n where
A= L*(12") (e, ..., en) = e!?>"(L(e1), L(ea),. .., L(en)) = det A by defini-
tion of el2+™ and because columns of A are given by L(e1), L(ez), ..., L(ey)
written in the basis (e1,...,ep). O

3. WEDGE PRODUCT
Let T € T*(V). Define Alt(T) as

1
AIK(T) = 4 ) signo T
’ ocESk

Lemma 3.1.

a) Alt(T) is alternating for any T.
b) If w € A¥(V) is alternating then Alt(w) = w
c) Alt: TH(V) — A¥(V) is linear.
d) Alt(°T) = signo - 7 Alt(T)
e) Alt commutes with pullbacks: Let L: V. — W be linear and let T €
TH(W). Then
Alt(L*(T)) = L*(Alt(T))

Definition 3.2. Let w € A¥(V),n € A(V). Then we define their wedge
product w A n by the formula
(k+1)!

wAN= S Alt(w @)

Lemma 3.3.
i) el Nel = el for any I = (i1,... i), J = (j1,.-.Ji)
ii) ()\10.)1 + )\Q(UQ) AN =X w1 AN+ dows An
i) (@A) AC=wA (1A Q)
w) wAn=(=1)llyAw
v) Let I = (i1,...,ix) then el = et A ... Aelk

vi) For anywi,...,wx € V¥, v1,...,05 € V we have wiA. . Awk(v1,...,05) =
det(w;(v;))
vii) let wi,...,wr € V*. Then wi A ... ANwk = 0 iff wy,...,wg are linearly

dependent.
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Proof. Parts i)-vi) are proved in the book (Propositions 14.10 and 14.11).
Let’s prove vii).

Note that for any w € V* by part iv) we have that w Aw = (—1)w Aw
and hence w A w = 0.

Suppose wi,...,w are linearly dependent. Then we can write one of
them as a linear combination of the others. WLOG we can assume wj =
Zf:_ll Aiw;. Therefore,

k—1 k—1
w1 Ao A\ wg :wl/\.../\wk,l/\(ZAiwi) :Zx\iwl/\.../\wk,l Aw; =0
i=1 i=1
because each summand contains a repeated factor.
Now suppose wi,...,w; are linearly independent. Then we can find
Wkt1,---,wn € V* such that wy,...,w, is a basis of V*. Let v1,...,v,

be the dual basis of V, i.e. w;i(v;) = d;;. Then by vi) we have wi A ... A
wi(v1, ..., v;) = det(w;i(v;)) =1 and hence wy A ... Awy # 0. O



