1. Tensors on vector spaces

Let V be a finite dimensional vector space over \mathbb{R} .

Definition 1.1. A tensor of type (k, l) on V is a map

$$T: \underbrace{V \times \ldots \times V}_{k \text{ times}} \times \underbrace{V^* \times \ldots \times V^*}_{l \text{ times}} \to \mathbb{R}$$

which is linear in every variable.

Example 1.2.

- Let $v \in V$ be a vector. Then v defines a tensor T_v of type (0,1) with the map $T_v \colon V^* \to \mathbb{R}$ given by $T_v(f) = f(v)$. The map $v \mapsto T_v$ gives a linear isomorphism from V onto $(V^*)^* =$ space of all tensors of type (0,1).
- Let $\langle \cdot, \cdot \rangle$ be an inner product on V. Then it is a tensor of type (2,0).
- Let $V = \mathbb{R}^n$ and let $T: \underbrace{V \times \ldots \times V}_{n \text{ times}} \to \mathbb{R}$ be given by $T(v_1, \ldots, v_n) = 0$

det A where A is the $n \times n$ matrix with columns v_1, \ldots, v_n . Then T is a tensor of type (n, 0).

From now on we will only consider tensors of type (k,0) which we'll refer to as simply k-tensors. Let $\mathcal{T}^k(V)$ be the set of all k tensors on V. It's obvious that $\mathcal{T}^k(V)$ is a vector space and $\mathcal{T}^1(V) = V^*$. Also $\mathcal{T}^0(V) = \mathbb{R}$.

Definition 1.3. Let V, W be vector spaces and let $L: V \to W$ be a linear map. Let T be a k-tensor on W. Let $L^*(T): \underbrace{V \times \ldots \times V}_{k \text{ times}} \to \mathbb{R}$ be defined

by the formula

$$L^*(T)(v_1, \ldots, v_k) := T(L(v_1), \ldots, L(v_k))$$

Then it's immediate that $L^*(T)$ is a k-tensor on V which we'll call the pullback of T by L.

It's easy to see that $L^* \colon \mathcal{T}^k(W) \to \mathcal{T}^k(V)$ is linear.

Definition 1.4. Let $T \in \mathcal{T}^k(V)$, $S \in \mathcal{T}^l(V)$. We define their tensor product $T \otimes S \in \mathcal{T}^{k+l}(V)$ by the formula

$$T \otimes S(v_1, \ldots, v_{k+l}) = T(v_1, \ldots, v_k) \cdot S(v_{k+1}, \ldots, v_{k+l})$$

It's obvious that $T\otimes S$ is a tensor. The following properties of tensor product are obvious from the definition

- Tensor product is associative: $(T \otimes S) \otimes R = T \otimes (S \otimes R)$
- tensor product is linear in both variables: $(\lambda_1 T_1 + \lambda_2 T_2) \otimes R = \lambda_1 T_1 \otimes R + \lambda_2 T_2 \otimes R$ and the same holds for R.
- tensor product commutes with pullback, i.e. if $L \colon V \to W$ is a linear map between vector spaces and T, S are tensors on W then

$$L^*(T \otimes S) = L^*(T) \otimes L^*(S)$$

Let us construct a basis of $\mathcal{T}^k(V)$ and compute its dimension. Let e_1, \ldots, e_n be a basis of V and let $e^1, \ldots e^n$ be the dual basis of V^* , i.e.

$$e^i(e_j) = \delta_{ij}$$

For any multi-index $I = (i_1, \ldots, i_k)$ with $1 \leq i_j \leq n$ define ϕ^I as $\phi^I = e^{i_1} \otimes \ldots \otimes e^{i_k}$. Also, we will denote the k-tuple $(e_{i_1}, \ldots e_{i_k})$ by e_I .

It's immediate from the definition that

(1)
$$\phi^{I}(e_{J}) = \delta_{IJ} = \begin{cases} 1 \text{ if } I = J \\ 0 \text{ if } I \neq J \end{cases}$$

For example $e^1 \otimes e^2(e_2, e_1) = e^1(e_2) \cdot e^2(e_1) = 0$.

Lemma 1.5. Let $T, S \in \mathcal{T}^k(V)$ then T = S iff $T(e_I) = S(e_I)$ for any multi-index $I = (i_1, \ldots i_k)$.

Proof. This follows immediately from multi-linearity of T and S.

Lemma 1.6. The set $\{\phi^I\}_{I=(i_1,...,i_k)}$ is a basis of $\mathcal{T}^k(V)$. In particular, $\dim \mathcal{T}^k(V) = n^k$

Proof. Let us first check linear independence of ϕ^I 's. Suppose $\sum_I \lambda_I \phi^I = 0$. Let $J = (j_1, \dots, j_k)$ be a multi-index of length k. Using (1) we obtain

$$0 = (\sum_{I} \lambda_{I} \phi^{I})(e_{J}) = \sum_{I} \lambda_{I} \phi^{I}(e_{J}) = \sum_{I} \lambda_{I} \delta_{IJ} = \lambda_{J}$$

Since J was arbitrary this proves linear independence of $\{\phi^I\}_{I=(i_1,\ldots,i_k)}$. Let us show that they span $\mathcal{T}^k(V)$.

Let $T \in \mathcal{T}^k(V)$. Let $S = \sum_I T(e_I)\phi^I$. Then S belongs to the span of $\{\phi^I\}_I$. For any J we have that $S(e_J) = \sum_I T(e_I)\phi^I(e_J) = \sum_I T(e_I)\delta_{IJ} = T(e_J)$. Therefore, T = S by Lemma 1.5 and hence T belongs to the span of $\{\phi^I\}_I$.

2. Alternating tensors

Definition 2.1. Let V be a finite dimensional vector space. A k-tensor T on V is called alternating if for any v_1, \ldots, v_k and any $1 \leq i < j \leq k$ we have

$$T(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k)=-T(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

Example 2.2.

- \bullet Any 1-tensor on V is alternating.
- The determinant tensor defined in Example 1.2 is alternating.
- More generally, let $e_1, \ldots e_n$ be a basis of V. Let $I = (i_1, \ldots, i_k)$ be a k-multi-index. Define a k tensor e^I as follows.

Let $v_1, \ldots, v_k \in V$. Let A be the $n \times k$ matrix whose i-th column is given by the coordinates of v_i with respect to the basis $e_1, \ldots e_n$. Let A^I be the $k \times k$ matrix made of rows i_1, \ldots, i_k of A.

Define e^{I} by the formula

$$e^I(v_1,\ldots,v_k) = \det A^I$$

It's immediate that e^{I} is alternating because the determinant of a matrix changes sign if two of its columns are switched. It's also obvious that if I has some repeating indices then $e^{I} = 0$.

The following properties of alternating tensors are immediate from the definition

- Let $\mathcal{A}^k(V)$ be the set of all alternating k tensors on V. Then $\mathcal{A}^k(V)$ is a vector subspace of $\mathcal{T}^k(V)$, i.e. a linear combination of alternating tensors is alternating.
- If $L: V \to W$ is linear and $\omega \in \mathcal{A}^k(W)$ then $L^*(\omega) \in \mathcal{A}^k(W)$

Remark 2.3. In the notations of the book $\mathcal{A}^k(V) = \Lambda^k(V^*)$.

Let $\sigma \in S_k$ be a permutation and let $T \in \mathcal{T}^k(A)$ be a k-tensor. Define ${}^{\sigma}T$ by

$$^{\sigma}T(v_1,\ldots,v_k)=T(v_{\sigma(1)},\ldots,v_{\sigma(k)})$$

The following properties are immediate from the definition

- $\bullet \ ^{\sigma}(\lambda_1 T_1 + \lambda_2 T_2) = \lambda_1 {}^{\sigma} T_1 + \lambda_2 {}^{\sigma} T_2$
- $\bullet \ \stackrel{\sigma \dot{\tau}}{} T = {}^{\sigma}({}^{\tau}T)$

Lemma 2.4. Let $T \in \mathcal{T}^k(V)$. Then TFAE

- (i) $T(v_1, \ldots, v_k) = 0$ if $v_i = v_j$ for some $i \neq j$
- (ii) T is alternating;
- (iii) $T(v_1, \ldots, v_k) = 0$ if v_1, \ldots, v_k are linearly dependent.
- (iv) ${}^{\sigma}T = \operatorname{sign} \sigma \cdot T$ for any $\sigma \in S_k$.

Let $e_1, \ldots e_n$ be a basis of V. Let $I = (i_1, \ldots i_k), J = (j_1, \ldots, j_k)$ be two multi-indices with $i_s \neq i_t, j_s \neq j_t$ for all $s \neq t$.

It's easy to see from the definition of e^I that $e^I(e_J) = 0$ if $\{i_1, \ldots, i_k\} \neq \{j_1, \ldots, j_k\}$ and $e^I(e_J) = \operatorname{sign} \sigma$ if $\{i_1, \ldots, i_k\} = \{j_1, \ldots, j_k\}$ and $\sigma \in S_k$ is the unique permutation satisfying $I = \sigma(J) = (j_{\sigma(1)}, \ldots, j_{\sigma(k)})$

In particular, if $I = (i_1 < i_2 < ... < i_k), J = (j_1 < j_2 < ... < j_k)$ then

$$(2) e^{I}(e_{J}) = \delta_{IJ}$$

Lemma 2.5. Let $\alpha, \beta \in \mathcal{A}^k(V)$. Then $\alpha = \beta$ iff $\alpha(e_I) = \beta(e_I)$ for any $I = (i_1 < i_2 < \ldots < i_k)$.

Lemma 2.6. The set $\{e^I\}_{I=(i_1< i_2< ...< i_k)}$ is a basis of $\mathcal{A}^k(V)$. In particular $\dim \mathcal{A}^k(V) = \binom{n}{k}$ for $k \leq n$ and $\dim \mathcal{A}^k(V) = 0$ if k > n.

Proof. The proof is the same as the proof of Lemma 1.6 but using Lemma 2.5 instead of Lemma 1.5 and (2) instead of (1). \Box

Example 2.7. Any element of $\mathcal{A}^k(V)$ can be written as a linear combination of the standard basis $\{\phi^I\}$ of $\mathcal{T}^k(V)$. For example, if $n = \dim V = 4$ then $e^{13} = e^1 \otimes e^3 - e^3 \otimes e^1 = \phi^{13} - \phi^{31}$.

Lemma 2.8. Let $L: V \to V$ be a linear map and let A = [L] be the matrix of L with respect to the basis e_1, \ldots, e_n of V. Then for any $w \in \mathcal{A}^n(V)$ we have that $L^*(w) = (\det A)w$.

Proof. By Lemma 2.6, $\mathcal{A}^n(V)$ is 1-dimensional with basis given by $e^{12...n}$. Therefore, it's enough to prove the lemma for $\omega = e^{12...n}$.

We have $L^*(^{12...n}) = \lambda^{12...n}$ where $\lambda = L^*(^{12...n})(e_1, \ldots, e_n) = e^{12...n}(L(e_1), L(e_2), \ldots, L(e_n)) = \det A$ by definition of $e^{12...n}$ and because columns of A are given by $L(e_1), L(e_2), \ldots, L(e_n)$

3. Wedge product

Let $T \in \mathcal{T}^k(V)$. Define Alt(T) as

written in the basis (e_1, \ldots, e_n) .

$$Alt(T) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sign} \sigma \cdot {}^{\sigma}T$$

Lemma 3.1.

- a) Alt(T) is alternating for any T.
- b) If $\omega \in \mathcal{A}^k(V)$ is alternating then $Alt(\omega) = \omega$
- c) Alt: $\mathcal{T}^k(V) \to \mathcal{A}^k(V)$ is linear.
- d) $Alt(\sigma T) = sign \sigma \cdot \dot{\sigma} Alt(T)$
- e) Alt commutes with pullbacks: Let $L\colon V\to W$ be linear and let $T\in\mathcal{T}^k(W)$. Then

$$Alt(L^*(T)) = L^*(Alt(T))$$

Definition 3.2. Let $\omega \in \mathcal{A}^k(V)$, $\eta \in \mathcal{A}^l(V)$. Then we define their wedge product $\omega \wedge \eta$ by the formula

$$\omega \wedge \eta = \frac{(k+l)!}{k! \cdot l!} \operatorname{Alt}(\omega \otimes \eta)$$

Lemma 3.3.

- i) $e^{I} \wedge e^{J} = e^{IJ}$ for any $I = (i_1, ..., i_k), J = (j_1, ..., j_l)$
- $ii) (\lambda_1\omega_1 + \lambda_2\omega_2) \wedge \eta = \lambda_1\omega_1 \wedge \eta + \lambda_2\omega_2 \wedge \eta$
- *iii*) $(\omega \wedge \eta) \wedge \zeta = \omega \wedge (\eta \wedge \zeta)$
- iv) $\omega \wedge \eta = (-1)^{|\omega| \cdot |\eta|} \eta \wedge \omega$
- v) Let $I = (i_1, \ldots, i_k)$ then $e^I = e^{i_1} \wedge \ldots \wedge e^{i_k}$
- vi) For any $\omega_1, \ldots, \omega_k \in V^*, v_1, \ldots, v_k \in V$ we have $\omega_1 \wedge \ldots \wedge \omega_k(v_1, \ldots, v_k) = \det(\omega_i(v_i))$
- vii) let $\omega_1, \ldots, \omega_k \in V^*$. Then $\omega_1 \wedge \ldots \wedge \omega_k = 0$ iff $\omega_1, \ldots, \omega_k$ are linearly dependent.

Proof. Parts i)-vi) are proved in the book (Propositions 14.10 and 14.11). Let's prove vii).

Note that for any $\omega \in V^*$ by part iv) we have that $\omega \wedge \omega = (-1)\omega \wedge \omega$ and hence $\omega \wedge \omega = 0$.

Suppose $\omega_1, \ldots, \omega_k$ are linearly dependent. Then we can write one of them as a linear combination of the others. WLOG we can assume $\omega_k = \sum_{i=1}^{k-1} \lambda_i \omega_i$. Therefore,

$$\omega_1 \wedge \ldots \wedge \omega_k = \omega_1 \wedge \ldots \wedge \omega_{k-1} \wedge (\sum_{i=1}^{k-1} \lambda_i \omega_i) = \sum_{i=1}^{k-1} \lambda_i \omega_1 \wedge \ldots \wedge \omega_{k-1} \wedge \omega_i = 0$$

because each summand contains a repeated factor.

Now suppose $\omega_1, \ldots, \omega_k$ are linearly independent. Then we can find $\omega_{k+1}, \ldots, \omega_n \in V^*$ such that $\omega_1, \ldots, \omega_n$ is a basis of V^* . Let v_1, \ldots, v_n be the dual basis of V, i.e. $\omega_i(v_j) = \delta_{ij}$. Then by vi) we have $\omega_1 \wedge \ldots \wedge \omega_k(v_1, \ldots, v_k) = \det(\omega_i(v_j)) = 1$ and hence $\omega_1 \wedge \ldots \wedge \omega_k \neq 0$.