Informally a smooth manifold is a space which locally looks like an open subset of \mathbb{R}^n . It need not be a subset of \mathbb{R}^N globally.

Example 0.0.1. Let X be the configuration space of two distinct points in \mathbb{R}^2 i.e. the set of two point subsets of \mathbb{R}^2 . It's equal to $(\mathbb{R}^2 \times \mathbb{R}^2 \setminus \Delta \mathbb{R}^2)/\sim$ where $(x,y) \sim (y,x)$. This space is a manifold but it's not canonically embedded into any \mathbb{R}^N .

Definition 0.0.2. A generalized smooth manifold of dimension n is a set M together with a collection of subsets $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and maps $\psi_{\alpha}\colon V_{\alpha}\to$ U_{α} where V_{α} is an open subset of \mathbb{R}^n such that the following properties are satisfied

- (1) $\bigcup_{\alpha} U_{\alpha} = M$
- (2) $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha}$ is a bijection for every α (3) For any α, β the set $U_{\alpha\beta} = \psi_{\alpha}^{-1}(U_{\alpha} \cap U_{\beta})$ is open in \mathbb{R}^n (4) For any α, β the map $\psi_{\beta}^{-1} \circ \varphi_{\alpha} \colon U_{\alpha\beta} \to U_{\beta\alpha}$ is smooth.

The collection $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ together with the maps $\psi_{\alpha}\colon V_{\alpha}\to U_{\alpha}$ is called a smooth atlas on M.

The maps $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha}$ are called local parameterizations.

The inverse maps $\varphi_{\alpha} = \psi_{\alpha}^{-1} \colon U_{\alpha} \to V_{\alpha}$ are called local charts or local coordinates.

Two atlases on M are said to define the same smooth structure if their union is still a smooth atlas on M.

Examples

- $M = \mathbb{R}^n, \mathcal{A} = \{1\}, U_1 = V_1 = \mathbb{R}^n, \psi_1 = id.$
- $M = \mathbb{R}, \mathcal{A} = \{1\}, U_1 = V_1 = \mathbb{R}, \psi_1 \colon \mathbb{R} \to \mathbb{R} \text{ is given by } \varphi(x) = x^3.$
- $M = \Gamma_f$ the graph of f where $f: \mathbb{R}^n \to \mathbb{R}^k$. (here $\Gamma_f = \{(x,y) \in \mathbb{R}^n \in \mathbb{R}^n$ $\mathbb{R}^{n+k}| y = f(x)\}$). $\mathcal{A} = \{1\}, U_1 = \mathbb{R}^n, V_1 = M, \psi(x) = (x, f(x))\}$
- $S^n = \{(x_0, x_1, \dots, x_n) | \Sigma_i x_i^2 = 1\}$. For each i set $U_i^+ = \{(x_0, x_1, \dots, x_n) \in S^n | x_i > 0\} \text{ and } U_i^- = \{(x_0, x_1, \dots, x_n) \in S^n | x_i > 0\}$

 $S^{n}| \quad x_{i} < 0$. Let $V_{i}^{\pm} = \{(u_{0}, \dots, u_{n-1}) | \quad \Sigma_{i} u_{i}^{2} < 1\}$ and let $\psi_{i}^{\pm} : V_{i}^{\pm} \to U_{i}^{\pm}$ be given by $\psi_i(u) = (u_0, \dots, u_{i-1}, \pm \sqrt{1 - |u|^2}, u_i, \dots, u_{n-1})$. The inverse map is just the projection $\varphi_i^{\pm}(u_0,\ldots,u_n)=(u_0,\ldots,\hat{u}_i,\ldots u_n)$ This collection is a smooth atlas on S^n (verify!).

If j < i then

$$\psi_j^{-1} \circ \psi_j(u_0, \dots, u_{n-1}) = (u_0, \dots, u_{j-1}, u_{j+1}, \dots, u_{i-1}, \pm \sqrt{1 - |u|^2}, u_i, \dots, u_{n-1})$$

• \mathbb{RP}^n is the set of lines through 0 in \mathbb{R}^{n+1} . It can be equivalently described as the set of equivalence classes of points in $\mathbb{R}^{n+1}\setminus\{0\}$ modulo the equivalence relation $(x_0, \ldots, x_n) \sim (x'_0, \ldots, x'_n)$ iff $(x'_0, \ldots, x'_n) =$ $t(x_0,\ldots,x_n)$ for some $t\neq 0$. The equivalence class of (x_0,\ldots,x_n) will be denoted by $[x_0:x_1:\ldots:x_n]$

Let $U_i \subset \mathbb{RP}^n$ be the set of lines of the form $\mathbb{R}(x_0,\ldots,x_n)$ with $x_i \neq 0$ for any nonzero point. any such line intersects the hyperplane

 $\{x_i = 1\}$ in a single point. This gives us a bijective map $\varphi_i \colon U_i \to \mathbb{R}^n$ given by $\varphi_i([x_0 \colon x_1 \colon \ldots \colon x_n]) = (\frac{x_0}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i})$ with the inverse given by

 $\psi_i(u_0,\ldots,u_{n-1}) = [u_0:\ldots:u_{i-1}:1:u_i:\ldots:u_n].$ For j < i we have $\varphi_j \circ \psi_i(u_0,\ldots,u_{n_1}) = \varphi_j([u_0:\ldots,u_{i-1}:1:u_i:\ldots:u_{n-1}]) = (\frac{u_0}{u_j},\ldots,\frac{u_{j-1}}{u_j},\frac{u_{j+1}}{u_j},\ldots,\frac{u_{i-1}}{u_j},\frac{1}{u_j},\frac{u_{i-1}}{u_j},\frac{u_i}{u_j},\ldots,\frac{u_{n-1}}{u_j}).$ This map is smooth on the open set $\{u_j \neq 0\} = \psi_i^{-1}(U_j)$. A similar

formula holds in the case j > i. This gives a smooth atlas on \mathbb{RP}^n .

Example 0.0.3. Different smooth structures on \mathbb{R} . The first structure is given by $U_1 = V_1 = \mathbb{R}$ with $\psi \colon \mathbb{R} \to \mathbb{R}$ given by the identity map $\psi_1(x) = x$. the second smooth structure is given by $\tilde{U}_1 = \tilde{V}_1 = \mathbb{R}$ with $\tilde{p}si \colon \mathbb{R} \to \mathbb{R}$ given by $\tilde{\psi}_1(x) = x^3$.

These smooth structure are distinct because these two atlases together do not form a smooth atlas since $\tilde{\psi}_1^{-1} \circ \psi_1(x) = \sqrt[3]{x}$ is not smooth at zero.

Definition 0.0.4. let X be a generalized smooth n-dimensional manifold with an atlas $\{\psi_i \colon V_\alpha \to U_\alpha\}_{\alpha \in \mathcal{A}}$. A subset U of X is called **open** if $\psi_\alpha^{-1}(U)$ is an open subset of \mathbb{R}^n for any α .

It's easy to see that open sets satisfy the following properties

- X and \emptyset are open.
- U_{α} is open for any α .
- Union of any collection of open sets is open
- Intersection of finitely many open sets is open.

Definition 0.0.5. A generalized smooth manifold M^n is called Hausdorff for any two distinct points $p_1, p_2 \in X$ there exist open sets $W_1, W_2 \subset X$ such that $p_1 \in W_1, p_2 \in W_2$ and $W_1 \cap W_2 = \emptyset$.

Definition 0.0.6. A generalized smooth manifold M^n is called a smooth manifold if it is Hausdorff and it admits a **countable** atlas $\{\psi_i \colon V_{\alpha} \to U_{\alpha}\}_{\alpha \in \mathcal{A}}$.

Example 0.0.7. Let $I_1 = (-1,1) \times \{1\}, I_2 = (-1,1) \times \{2\}$. Let X be the space obtained from $I_1 \cup I_2$ by identifying points (x,1) with (x,2) for all $x \neq 0$. Let $\pi \colon I_1 \cup I_2 \to X$ be the natural projection map and let $\psi_i \colon (-1,1) \to X$ be given by $\psi_i(x) = \pi(x,i)$. This gives a smooth atlas on X with the transition map $\psi_2^{-1} \circ \psi_1$ equal to the identity map of $(-1,1)\setminus\{0\}$ to itself. Thus X is a generalized 1-dimensional manifold. However it is not Hausdorff (why?) and hence is not a smooth manifold.

Example 0.0.8. \mathbb{R}^n , S^n , \mathbb{RP}^n are Hausdorff and admit countable atlases. hence they are smooth manifolds.