1. Examples of smooth manifolds

Recall from the previous lecture that if c is a regular value of $F: U \to \mathbb{R}^k$ where U is an open subset of \mathbb{R}^{n+k}

then $M = \{F = c\}$ has a natural structure of a generalized manifold of dimension n.

Example 1.0.1. Let $SL(n, \mathbb{R})$ be the set of all $n \times n$ matrices with determinant 1. It is a smooth manifold of dimension $n^2 - 1$. To see this let $M(n \times m)$ be the set of all real $n \times m$ matrices. It can be canonically identified with \mathbb{R}^{nm} . $SL(n, \mathbb{R})$ is a subset of $M(n \times n)$ equal to the level set $\{F = 1\}$ of the function $F: M(n \times n) \to \mathbb{R}$ given by $F(A) = \det A$. Since the formula for the determinant of a matrix is polynomial in the coefficients of the matrix, it is obviously smooth.

We claim that 1 is a regular value of F. To see this we need to show that the differential $dF_A \colon \mathbb{R}^{n^2} \to \mathbb{R}$ is onto for any $A \in SL(n, \mathbb{R})$. Since the target is 1-dimensional this is equivalent to checking that $dF_A \neq 0$.

Let's find the formula for dF_A . We first consider the case A = Id.

Claim:

$$dF_{Id}(X) = tr(X)$$

for any $X \in M(n \times n)$.

Since both the left and the right side of this formula are linear in X it's enough to verify it on the standard basis of $M(n \times n) = \mathbb{R}^{n^2}$.

Let E_{ij} be the $n \times n$ matrix which has the (i, j) entry equal to 1 and all other entries equal to 0.

Suppose $i \neq j$. Then $tr(E_{ij}) = 0$. On the other hand, $dF_{id}(E_{ij}) = D_{E_{ij}}F_{Id} = \lim_{t\to 0} \frac{F(Id+tE_{ij})-F(Id)}{t} = \lim_{t\to 0} \frac{1-1}{t} = 0$ since $Id + tE_{ij}$ is a triangular matrix with 1's on the diagonal.

Thus $dF_{Id}(E_{ij}) = tr(E_{ij})$ for any $i \neq j$.

Let's now consider the case i = j. Obviously, $tr(E_{ii}) = 1$.

As before we compute $dF_{id}(E_{ii}) = D_{E_{ii}}F_{Id} = \lim_{t\to 0} \frac{F(Id+tE_{ii})-F(Id)}{t} = \lim_{t\to 0} \frac{1+t-1}{t} = 1$ because $Id + tE_{ij}$ is a diagonal matrix with the *i*th diagonal entry equal to 1 + t and the rest of of diagonal elements equal to 1. $dF_{Id}(E_{ii}) = tr(E_{ii})$ for any *i*. Together with the above this means that $dF_{Id}(E_{ij}) = tr(E_{ij})$ for any *i*, *j*. By linearity of tr and dF_{Id} this proves the **Claim**.

Now suppose A is an arbitrary matrix in $SL(n, \mathbb{R})$ and let $X \subset M(n \times n)$ be any matrix.

Then, using multiplicativity of determinants and the Claim above we compute

$$dF_A(X) = \lim_{t \to 0} \frac{F(A + tX) - F(A)}{t} = \lim_{t \to 0} \frac{\det(A + tX) - \det(A)}{t} = \lim_{t \to 0} \frac{\det(A(Id + tA^{-1}X) - \det(A))}{t} = \lim_{t \to 0} \frac{\det(A)\det(Id + tA^{-1}X) - \det(A)}{t} = \lim_{t \to 0} \frac{\det(A)\det(Id + tA^{-1}X) - \det(A)}{t} = \lim_{t \to 0} \frac{\det(A)\det(Id + tA^{-1}X) - \det(A)}{t} = \lim_{t \to 0} \frac{\det(A)\det(A)\det(A)}{t} = \lim_{t \to 0} \frac{\det(A)\det(A)}{t} = \lim_{t \to 0} \frac{\det(A)}{t} = \lim_{t \to 0} \frac{\det(A)\det(A)}{t} = \lim_{t \to 0} \frac{\det(A)}{t} = \lim_{t \to 0$$

$$\det A \cdot \lim_{t \to 0} \frac{\det(Id + tA^{-1}X) - \det(Id)}{t} = tr(A^{-1}X)$$

Thus

$$dF_A(X) = tr(A^{-1}X)$$

This obviously means that $dF_A \neq 0$ (e.g. because $dF_A(A) = tr(A^{-1}A) =$ n). Therefore 1 is a regular value of F and hence $SL(n,\mathbb{R}) = \{F = 1\}$ is a smooth manifold of dimension $n^2 - 1$.

Example 1.0.2. Let $O(n) = \{A \in M(n \times n) | \text{ such that } A \cdot A^t = Id$. Then O(n) is a smooth manifold. To see this, consider the map $F: M(n \times n) \to C(n)$ $M(n \times n)$ given by $F(A) = A \cdot A^t$. Then $O(n) = \{F = Id\}$. However, Id is not a regular value because $(A \cdot A^t)^t = (A^t)^t \cdot A^t = A \cdot A^t$ which means that $(A \cdot A^t)$ is symmetric for any A. Let Sym(n) be the set of symmetric $n \times n$ matrices. Then F maps $M(n \times n)$ to Sym(n).

Claim. Id is a regular value of $F: M(n \times n) \to Sym(n)$ Consequently, O(n) is a smooth manifold of dimension n(n-1)/2. (Homework).

2. Manifolds with boundary

Let $\mathbb{H}^n = \mathbb{R}^n_+ = \{(x_1, \dots, x_n) \in \mathbb{R}^n | \text{ such that } x_n \ge 0\}$. We will call the set $\{x_n > 0\}$ the *interior* of \mathbb{H}^n and denote it by $\operatorname{int} \mathbb{H}^n$. We will call the set $\{x_n = 0\}$ the boundary of \mathbb{H}^n and denote it by $\operatorname{int} \mathbb{H}^n$.

A subset $U \subset H^n$ is said to be open in H^n if $U = W \cap H^n$ for some open set $W \subset \mathbb{R}^n$.

Definition 2.0.3. Let $U \subset \mathbb{H}^n$ be open. A map $F: U \to \mathbb{R}^k$ is called smooth if for every point $x \in U$ there exists an open set $W \subset \mathbb{R}^n$ containing x such that $W \cap \mathbb{H}^n \subset U$ and $F|_{U \cap W}$ admits a smooth extension $\overline{F} \colon W \to W$ \mathbb{R}^k .

(Note that \overline{F} need not be unique).

Definition 2.0.4. A generalized smooth manifold with boundary is a set Xtogether with a atlas $\{\psi_{\alpha}: V_{\alpha} \to U_{\alpha} \subset X\}_{\alpha \in A}$ where V_{α} is an open subset of H^n such that the following properties are satisfied

- (1) $\cup_{\alpha} U_{\alpha} = M$
- (2) $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha}$ is a bijection for every α
- (3) For any α, β the set $U_{\alpha\beta} = \psi_{\alpha}^{-1}(U_{\alpha} \cap U_{\beta})$ is open in \mathbb{R}^{n} (4) For any α, β the map $\psi_{\beta}^{-1} \circ \varphi_{\alpha} \colon U_{\alpha\beta} \to U_{\beta\alpha}$ is smooth.

Similar to usual manifolds one can define equivalence of atlases and prove the existence of a unique maximal atlas containing a given atlas for (generalized) manifolds with boundary.

As for manifolds without boundary one can define the topology on a generalized manifold with boundary: A subset $U \subset X$ is called open if $U \cap \psi_{\alpha}^{-1}(U_{\alpha})$ is open in \mathbb{H}^n .

Definition 2.0.5. A generalized smooth manifold X with boundary is called *a smooth manifold with boundary* if it admits a countable atlas and is Hausdorff.

Example 2.0.6.

- \mathbb{H}^n is a smooth manifold with boundary
- $\overline{D}^n = \{x \in \mathbb{R}^n | \text{ such that } |x| \leq 1 \text{ is a smooth manifold with boundary}$
- A (generalized) smooth manifold is a (generalized) smooth manifold with boundary (why?) If M^n is a smooth manifold of dimension n and N^m is a smooth manifold with boundary of dimension m then $M \times N$ is a smooth manifold with boundary of dimension n + m.
- Let $U \subset \mathbb{R}^n$ be open and let $F: U \to \mathbb{R}$ be smooth. Suppose $c \in \mathbb{R}$ is a regular value of f. Then $\{F \leq c\}$ and $\{F \geq c\}$ are smooth manifolds with boundary of dimension n.

Proof. We will construct an atlas on $M = \{F \ge c\}$ as follows. Let F(p) > c. Then because F is continuous, there is an $\epsilon > 0$ such that $B_{\epsilon}(p) \subset \{F > c\}$. Pick a sufficiently large d > 0 such that $B_{\varepsilon}(p + (0, \dots, 0, d) \subset \mathbb{H}^n$. Set $V_p = B_{\varepsilon}(p + (0, \dots, 0, d)$ and define $\psi_p: V_p \to M$ by the formula $\psi_p(x_1, \dots, x_n) = (x_1, \dots, x_{n-1}, x_n - d)$.

Now suppose F(p) = c. Since c is a regular value of F we have that $(\frac{\partial F}{\partial x_1}(p), \ldots, \frac{\partial F}{\partial x_n}(p)) \neq 0$. For simplicity let's assume $\frac{\partial F}{\partial x_n}(p) \neq 0$. As in the proof of the Implicit function theorem consider the map $\Phi: U \to \mathbb{R}^n$ defined by $\Phi(x_1, \ldots, x_{n-1}, x_n) =$ $(x_1, \ldots, x_{n-1}, F(x_1, \ldots, x_{n-1}, x_n) - c)$. We have that the matrix of partial derivatives $[d\Phi(p)]$ of Φ is an upper triangular matrix with 1's on the diagonal except for the last entry which is equal to $\frac{\partial F}{\partial x_n}(p)$. Therefore $\det[d\Phi(p)] = \frac{\partial F}{\partial x_n}(p) \neq 0$ and the Inverse Function Theorem is applicable. It says that for some small ϵ the map Φ bijectively maps $B_{\varepsilon}(p)$ to an open set W in \mathbb{R}^n and its inverse $\Psi: W \to B_{\varepsilon}(p)$ is also smooth. Note that by construction $\Phi(\{F \ge c\} \cap B_{\varepsilon}(p)) = W \cap \mathbb{H}^n$ and $\Phi(\{F = c\} \cap B_{\varepsilon}(p)) = W \cap \partial \mathbb{H}^n$. Let $\Psi_p = \Phi^{-1}: V_p = W \cap \mathbb{H}^n \to (\{F \ge c\} \cap B_{\varepsilon}(p))$. This will be our parameterization of M near p

It is now easy to see that the collection of all Ψ_p over $p \in M$ gives a smooth atlas satisfying the definition of a generalized manifold with boundary.

The fact that the resulting generalized manifold with boundary is Hausdorff and admits a countable atlas is proved in the same way as for regular level sets and is left to the reader as an exercise.

Definition 2.0.7. Let X be a (generalized) smooth manifold with boundary. A point $p \in X$ is called *interior* if for *some* chart $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha} \subset X$ we have that $p = \psi_{\alpha}(p_{\alpha})$ for some $p_{\alpha} \in \operatorname{int} \mathbb{H}^{n}$.

A point p is called a boundary point of X is for some chart $\psi_{\alpha} \colon V_{\alpha} \to$ $U_{\alpha} \subset X$ we have that $p = \psi_{\alpha}(p_{\alpha})$ for some $p_{\alpha} \in \partial \mathbb{H}^n$.

Theorem 2.0.8 (Topological invariance of the boundary). Let X^n be a (generalized) smooth manifold with boundary of dimension n.

- (1) Every point p of X is either an interior point of X or a boundary point of X but not both.
- (2) Let int X be the set of interior points of X and let ∂X be the set of boundary points of X. Then int X is a a (generalized) smooth manifold of dimension n and ∂X is a a (generalized) smooth manifold of dimension n-1.

Proof. To see (1) suppose that p is both an interior and a boundary point of X at the same time. This means that there exists parameterizations $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha} \ni p \text{ and } \psi_{\beta} \colon V_{\beta} \to U_{\beta} \ni p \text{ such that } V_{\alpha}, V_{\beta} \text{ are open subsets}$ of \mathbb{H}^n , $p = \psi_{\alpha}(p_{\alpha}) = \psi_{\beta}(p_{\beta})$ and $p_{\alpha} \in \operatorname{int} \mathbb{H}^n = \{x \in \mathbb{R}^n | x_n > 0\}$ and $p_{\beta} \in \partial \mathbb{H}^n = \{x \in \mathbb{R}^n | x_n = 0\}$. By taking a small ball around p_{α} and reducing the domain of ψ_{α} we can assume that V_{α} is an open subset of \mathbb{R}^n . Consider the transition maps $\psi_{\alpha\beta} = \psi_{\beta}^{-1} \circ \psi_{\alpha} \colon V_{\alpha\beta} \to V_{\beta\alpha}$ and $\psi_{\beta\alpha} \colon V_{\beta\alpha} \to V_{\beta\alpha}$

 $V_{\alpha\beta}$.

They are inverse to each other and WLOG we can assume that $\psi_{\beta\alpha}$ admits a smooth extension $\psi_{\beta\alpha}$ to a set $W_{\beta\alpha}$ which is open in \mathbb{R}^n . Since $\psi_{\beta\alpha} \circ \psi_{\alpha\beta} =$ $\psi_{\beta\alpha} \circ \psi_{\alpha\beta} = Id$ by the chain rule we conclude that $d_{p_{\alpha}}\psi_{\alpha_{\beta}} \colon \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism.

By the Inverse Function Theorem this means that there exist an open ball $B_{\epsilon}(p_{\alpha}) \subset V_{\alpha\beta}$ such that its image under $\psi_{\alpha\beta}$ in an open subset of \mathbb{R}^n containing p_{β} .

This is a contradiction because the image of $V_{\alpha\beta}$ under $\psi_{\alpha\beta}$ is equal to $V_{\beta\alpha}$ which is a subset of \mathbb{H}^n and no ball around p_β is contained in \mathbb{H}^n . Part (2) follows easily from part (1) (Exercise)

Remark 2.0.9. A smooth manifold with boundary X is as smooth manifold (without boundary) if and only if $\partial X = \emptyset$.

4