1. Smooth maps

Definition 1.0.1. Let M^n, N^m be smooth manifolds, possibly with boundary. A map $f: M \to N$ is called *smooth* if for any $p \in M$ and any parameterization $\varphi: V' \to U'$ where U' is open in N and contains f(p) there exists a local parameterization on M $\psi: V \to U$ where U is open in Mand $p \in U$ such that

- (1) $f(U) \subset U'$ and
- (2) $\varphi^{-1} \circ f \circ \psi \colon V \to \mathbb{R}^m$ is smooth.

Smooth maps from M to \mathbb{R} are called *smooth functions* on M.

Lemma 1.0.2. Let $f: M \to N$ be a smooth map. Then f is continuous.

Proof.

Let $W \subset N$ be open. We need to show that $f^{-1}(W)$ is open in M. Let $p \in f^{-1}(W)$, i.e. $f(p) \in W$. Pick a parameterization $\varphi \colon V'_p \to U'_p$ on N such that $f(p) \in U'_p \subset W$. By definition of smoothness there exists a local parameterization on M $\psi \colon V_p \to U_p$ such that $p \in U_p$ and $f(U_p) \subset U'_p \subset W$. Then $U_p \subset f^{-1}(W)$ and since U_p is open in M we have that $f^{-1}(W) = \bigcup_{p \in f^{-1}(W)} U_p$ is open. \Box

The following criterion shows that it's enough to check smoothness with respect to given atlases on M and N

Proposition 1.0.3 (Criterion of smoothness). Let M^n, N^m be manifolds, possibly with boundary, and let $\{\psi_{\alpha} : V_{\alpha} \to U_{\alpha}\}_{\alpha \in A}$ be an atlas on M and $\{\varphi'_{\beta} : V'_{\beta} \to U'_{\beta}\}_{\beta \in B}$ be an atlas on N.

then $f: M \to N$ is smooth if and only if for any α, β the set $U_{\alpha} \cap f^{-1}(U'_{\beta})$ is open in M and the map $(\varphi'_{\beta})^{-1} \circ f \circ \psi_{\alpha} \colon (f \circ \psi_{\alpha})^{-1}(V'_{\beta}) \to V'_{\beta} \subset \mathbb{R}^m$ is smooth.

Proof. Suppose the map f satisfies the conditions of the proposition we need to show that f is smooth. Let's first check that f is continuous.

Let $U' \subset N$ be open. We want to show that that $f^{-1}(U')$ is open in M. Since $U = \bigcup_{\beta} (U' \cap U'_{\beta})$ it's enough to show that $f^{-1}(U' \cap U'_{\beta})$ is open for every β .

Thus, WLOG we can assume that $U' \subset U'_{\beta}$ for some β' .

We are given that U' is open in N. therefore $(\varphi'_{\beta})^{-1}(U')$ is open in V'_{β} . Likewise, since $U_{\alpha} \cap f^{-1}(U'_{\beta})$ is open in M, the set $W_{\alpha\beta} = \psi_{\alpha}^{-1}[U_{\alpha} \cap f^{-1}(U'_{\beta})] = (f \circ \psi_{\alpha})^{-1}(V'_{\beta})$ is open in V_{α} .

We are given that the map $(\varphi'_{\beta})^{-1} \circ f \circ \psi_{\alpha} \colon W_{\alpha\beta} \to V'_{\beta} \subset \mathbb{R}^m$ is smooth. In particular, it's continuous and therefore $((\varphi'_{\beta})^{-1} \circ f \circ \psi_{\alpha})^{-1} (\varphi'_{\beta})^{-1} (U') = (f \circ \psi_{\alpha})^{-1} (U')$ is open in V_{α} . This holds for every α and hence $f^{-1} (U')$ is open in M.

This proves that f is continuous.

We are now ready to check the definition of smoothness of f. Let $p \in M$ and let $\varphi \colon V' \to U'$ be a parameterization on N where U' is open in N and contains f(p). let $\psi_{\beta} \colon V'_{\beta} \to U'_{\beta}$ be some parameterization in our chosen atlas on N such that $f(p) \in U'_{\beta}$.

Since f is continuous the set $f^{-1}(U' \cap U'_{\beta})$ is open in M. let $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha}$ be a local parameterization on M such that $p \in U_{\alpha}$. By changing U_{α} to $U_{\alpha} \cap f^{-1}(U' \cap U'_{\beta})$ we can assume that $U_{\alpha} \subset f^{-1}(U' \cap U'_{\beta})$

We claim that this $\psi = \psi_{\alpha}$ satisfies all the properties in the definition of a smooth map. Condition (1) is now obvious. To check condition (2) we first notice that the map $(\varphi'_{\beta})^{-1} \circ f \circ \psi_{\alpha}$ is smooth by the assumption of the proposition.

Therefore the map $\varphi^{-1} \circ f \circ \psi_{\alpha} = (\varphi^{-1} \circ \varphi'_{\beta}) \circ ((\varphi'_{\beta})^{-1} \circ f \circ \psi_{\alpha})$ is also smooth as a composition of smooth maps.

This proves that f is smooth. The only if implication of the proposition is left to the reader as an exercise.

The following properties of smooth maps easily follow from the definition

- A constant map $f: M \to N$ is smooth
- The identity map $id: M \to M$ is smooth
- Composition of smooth maps is smooth, that is if $f: M \to N$ and $g: N \to P$ are smooth then $g \circ f: M \to P$ is smooth
- Let $f: M \to N$ be smooth and let $U \subset M$ be open. Then $f|_U: U \to N$ is smooth.
- $f = (f_1, f_2): M \to N_1 \times N_2$ is smooth if and only if $f_i: M \to N_i$ is smooth for i = 1, 2.
- Let $f, g: M \to R$ be smooth functions. Then $f \pm g, f \cdot g$ are smooth and $\frac{f}{g}$ is smooth on $U = \{g \neq 0\}$
- (smoothness is a local) Let $\{U\alpha\}_{\alpha\in A}$ be an open cover of M. Then $f: M \to N$ is smooth if and only if $f|_{U_{\alpha}}: U_{\alpha} \to N$ is smooth for every α .

If M is a regular level set then smoothness of maps from M can be easily checked using the following proposition

Proposition 1.0.4. Let $U \subset \mathbb{R}^{n+k}$ be open and let $F: U \to \mathbb{R}^k$ be s smooth map and $c \in \mathbb{R}^k$ be a regular value of F. Let $M^n = \{F = c\}$. Then the inclusion $i: M \to \mathbb{R}^{n+k}$ is a smooth map.

Proof. This is immediate from the definition of the smooth structure on M and Proposition 1.0.3:

Recall that a smooth atlas on M is defined as follows. Given a point $p \in M$ after possibly renumbering coordinates in \mathbb{R}^{n+k} we can assume that F(x,y) satisfies $\det[\frac{\partial F_i}{\partial y_j}(p)] \neq 0$. By the inverse function theorem new p M is a graph of a smooth function y = y(x) and we have a local parameterization ψ_p of M near p given by $\psi_p(x) = (x, y(x))$. The collection of all such ψ_p over $p \in M$ is an atlas on M. For an atlas on \mathbb{R}^{n+k} we just

take the identity map $id: \mathbb{R}^{n+k} \to \mathbb{R}^{n+k}$. It is now immediate that the conditions of Proposition 1.0.3 hold for these atlases and hence $i: M \rightarrow$ \mathbb{R}^{n+k} is a smooth map.

Corollary 1.0.5. Under the assumptions of Proposition 1.0.4 suppose $q: U \rightarrow$ N is smooth. Then $g|_M \colon M \to N$ is also smooth.

Proof. $g|_M = g \circ i$ where $i: M \to \mathbb{R}^{n+k}$ is the canonical inclusion. Hence $g|_M$ is smooth as a composition of smooth maps.

2. DIFFEOMORPHISMS

Definition 2.0.6. A map $f: M \to N$ is called a *diffeomnorphism* if f is a bijection and both f and f^{-1} are smooth.

Two manifolds M and N are called diffeomorphic if there exists a diffeomorphism $f: M \to N$

Example 2.0.7.

- (1) let $M = \mathbb{R}$. Then $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is not a diffeomorphism. It's 1-1, onto an d smooth but the inverse map $f^{-1}(y) = \sqrt[3]{y}$ is not smooth.
- (2) Any two intervals (a, b) and (c, d) are diffeomorphic. For example $f(x) = \frac{d-c}{b-a}(x-a) + c \text{ is a diffeomorphism from } (a,b) \text{ to } (c,d)$ (3) $f(x) = e^x$ gives a diffeomorphism from \mathbb{R} to $(0,\infty)$.
- (4) $f(x) = \tan x$ gives a diffeomorphism from $(-\pi/2, \pi/2)$ to \mathbb{R} .

the following properties of diffeomorphisms easily follow from the definition

- Let $\{\psi_{\alpha}: V_{\alpha} \to U_{\alpha}\}_{\alpha \in A}$ be an atlas on M. Then $\psi_{\alpha}: V_{\alpha} \to U_{\alpha}$ is a diffeomorphism for any α .
- if $f \colon M \to N$ is a diffeomorphism then $f^{-1} \colon N \to M$ is also a diffeomorphism
- The identity map $id: M \to M$ is a diffeomorphism
- if $f: M \to N$ and $q: N \to P$ are diffeomorphisms then $q \circ f: M \to Q$ P is also a diffeomorphism.
- If $f: M \to N$ is a diffeomorphism and $U \subset M$ is open then $f|_U \colon U \to f(U)$ is also a diffeomorphism
- If $f: M \to N$ is a diffeomorphism then M is connected if and only if N is connected
- If $f: M \to N$ is a diffeomorphism then M is compact if and only if N is compact

Theorem 2.0.8 (Diffeomorphism invariance of boundary). Let $f: M \to N$ be a diffeomorphism. Then $f(\partial M) = \partial N$ and $f|_{\partial M} : \partial M \to \partial N$ is a diffeomorphism.

Proof. The proof is exactly the same as showing that a point in manifold with boundary can not be an interior and boundary point at the same time. The details are left to the reader as an exercise. **Example 2.0.9.** The closed Möbius band M and the cylinder $N = S^1 \times [01]$ are not diffeomorphic because $\partial M = S^1$ and $\partial N = S^1 \times \{0\} \cup S^1 \times \{1\}$. Since ∂M is connected and ∂N is not connected ∂M is not diffeomorphic to ∂N and hence M is not diffeomorphic to N.

4