
1. Smooth maps

Definition 1.0.1. Let Mn, Nm be smooth manifolds, possibly with bound-
ary. A map f : M → N is called smooth if for any p ∈ M and any pa-
rameterization ϕ : V ′ → U ′ where U ′ is open in N and contains f(p) there
exists a local parameterization on M ψ : V → U where U is open in M
and p ∈ U such that

(1) f(U) ⊂ U ′ and
(2) ϕ−1 ◦ f ◦ ψ : V → Rm is smooth.

Smooth maps from M to R are called smooth functions on M .

Lemma 1.0.2. Let f : M → N be a smooth map. Then f is continuous.

Proof.
Let W ⊂ N be open. We need to show that f−1(W ) is open in M . Let
p ∈ f−1(W ), i.e. f(p) ∈ W . Pick a parameterization ϕ : V ′p → U ′p on
N such that f(p) ∈ U ′p ⊂ W . By definition of smoothness there exists a
local parameterization on M ψ : Vp → Up such that p ∈ Up and f(Up) ⊂
U ′p ⊂ W . Then Up ⊂ f−1(W ) and since Up is open in M we have that

f−1(W ) = ∪p∈f−1(W )Up is open. �

The following criterion shows that it’s enough to check smoothness with
respect to given atlases on M and N

Proposition 1.0.3 (Criterion of smoothness). Let Mn, Nm be manifolds,
possibly with boundary, and let {ψα : Vα → Uα}α∈A be an atlas on M and
{ϕ′β : V ′β → U ′β}β∈B be an atlas on N .

then f : M → N is smooth if and only if for any α, β the set Uα∩f−1(U ′β)

is open in M and the map (ϕ′β)−1 ◦ f ◦ ψα : (f ◦ ψα)−1(V ′β)→ V ′β ⊂ Rm is
smooth.

Proof. Suppose the map f satisfies the conditions of the proposition we need
to show that f is smooth. Let’s first check that f is continuous.

Let U ′ ⊂ N be open. We want to show that that f−1(U ′) is open in M .
Since U = ∪β(U ′ ∩ U ′β) it’s enough to show that f−1(U ′ ∩ U ′β) is open for
every β .

Thus, WLOG we can assume that U ′ ⊂ U ′β for some β′ .

We are given that U ′ is open in N . therefore (ϕ′β)−1(U ′) is open in V ′β .

Likewise, since Uα ∩ f−1(U ′β) is open in M , the set Wαβ = ψ−1α [Uα ∩
f−1(U ′β)] = (f ◦ ψα)−1(V ′β) is open in Vα .

We are given that the map (ϕ′β)−1 ◦ f ◦ψα : Wαβ → V ′β ⊂ Rm is smooth.

In particular, it’s continuous and therefore ((ϕ′β)−1 ◦f ◦ψα)−1(ϕ′β)−1(U ′) =

(f ◦ ψα)−1(U ′) is open in Vα . This holds for every α and hence f−1(U ′) is
open in M .

This proves that f is continuous.
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We are now ready to check the definition of smoothness of f . Let p ∈M
and let ϕ : V ′ → U ′ be a parameterization on N where U ′ is open in N and
contains f(p). let ψβ : V ′β → U ′β be some parameterization in our chosen

atlas on N such that f(p) ∈ U ′β .

Since f is continuous the set f−1(U ′∩U ′β) is open in M . let ψα : Vα → Uα
be a local parameterization on M such that p ∈ Uα . By changing Uα to
Uα ∩ f−1(U ′ ∩ U ′β) we can assume that Uα ⊂ f−1(U ′ ∩ U ′β)

We claim that this ψ = ψα satisfies all the properties in the definition
of a smooth map. Condition (1) is now obvious. To check condition (2) we
first notice that the map (ϕ′β)−1 ◦ f ◦ ψα is smooth by the assumption of
the proposition.

Therefore the map ϕ−1 ◦ f ◦ ψα = (ϕ−1 ◦ ϕ′β) ◦ ((ϕ′β)−1 ◦ f ◦ ψα) is also
smooth as a composition of smooth maps.

This proves that f is smooth. The only if implication of the proposition
is left to the reader as an exercise. �

The following properties of smooth maps easily follow from the definition

• A constant map f : M → N is smooth
• The identity map id : M →M is smooth
• Composition of smooth maps is smooth, that is if f : M → N and
g : N → P are smooth then g ◦ f : M → P is smooth
• Let f : M → N be smooth and let U ⊂ M be open. Then
f |U : U → N is smooth.
• f = (f1, f2) : M → N1×N2 is smooth if and only if fi : M → Ni is

smooth for i = 1, 2.
• Let f, g : M → R be smooth functions. Then f±g, f ·g are smooth

and f
g is smooth on U = {g 6= 0}

• (smoothness is a local) Let {Uα}α∈A be an open cover of M . Then
f : M → N is smooth if and only if f |Uα : Uα → N is smooth for
every α .

If M is a regular level set then smoothness of maps from M can be easily
checked using the following proposition

Proposition 1.0.4. Let U ⊂ Rn+k be open and let F : U → Rk be s smooth
map and c ∈ Rk be a regular value of F . Let Mn = {F = c}. Then the
inclusion i : M → Rn+k is a smooth map.

Proof. This is immediate from the definition of the smooth structure on M
and Proposition 1.0.3:

Recall that a smooth atlas on M is defined as follows. Given a point
p ∈ M after possibly renumbering coordinates in Rn+k we can assume
that F (x, y) satisfies det[∂Fi∂yj

(p)] 6= 0. By the inverse function theorem

new p M is a graph of a smooth function y = y(x) and we have a local
parameterization ψp of M near p given by ψp(x) = (x, y(x)). The collection

of all such ψp over p ∈M is an atlas on M . For an atlas on Rn+k we just
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take the identity map id : Rn+k → Rn+k . It is now immediate that the
conditions of Proposition 1.0.3 hold for these atlases and hence i : M →
Rn+k is a smooth map. �

Corollary 1.0.5. Under the assumptions of Proposition 1.0.4 suppose g : U →
N is smooth. Then g|M : M → N is also smooth.

Proof. g|M = g ◦ i where i : M → Rn+k is the canonical inclusion. Hence
g|M is smooth as a composition of smooth maps. �

2. Diffeomorphisms

Definition 2.0.6. A map f : M → N is called a diffeomnorphism if f is a
bijection and both f and f−1 are smooth.

Two manifolds M and N are called diffeomorphic if there exists a diffeo-
morphism f : M → N

Example 2.0.7.
(1) let M = R . Then f : R→ R given by f(x) = x3 is not a diffeomor-

phism. It’s 1-1, onto an d smooth but the inverse map f−1(y) = 3
√
y

is not smooth.
(2) Any two intervals (a, b) and (c, d) are diffeomorphic. For example

f(x) = d−c
b−a(x− a) + c is a diffeomorphism from (a, b) to (c, d)

(3) f(x) = ex gives a diffeomorphism from R to (0,∞).
(4) f(x) = tanx gives a diffeomorphism from (−π/2, π/2) to R .

the following properties of diffeomorphisms easily follow from the defini-
tion

• Let {ψα : Vα → Uα}α∈A be an atlas on M . Then ψα : Vα → Uα is
a diffeomorphism for any α .
• if f : M → N is a diffeomorphism then f−1 : N → M is also a

diffeomorphism
• The identity map id : M →M is a diffeomorphism
• if f : M → N and g : N → P are diffeomorphisms then g◦f : M →
P is also a diffeomorphism.
• If f : M → N is a diffeomorphism and U ⊂ M is open then
f |U : U → f(U) is also a diffeomorphism
• If f : M → N is a diffeomorphism then M is connected if and only

if N is connected
• If f : M → N is a diffeomorphism then M is compact if and only

if N is compact

Theorem 2.0.8 (Diffeomorphism invariance of boundary). Let f : M → N
be a diffeomorphism. Then f(∂M) = ∂N and f |∂M : ∂M → ∂N is a
diffeomorphism.

Proof. The proof is exactly the same as showing that a point in manifold
with boundary can not be an interior and boundary point at the same time.
The details are left to the reader as an exercise. �
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Example 2.0.9. The closed Möbius band M and the cylinder N = S1×[01]
are not diffeomorphic because ∂M = S1 and ∂N = S1 × {0} ∪ S1 × {1} .
Since ∂M is connected and ∂N is not connected ∂M is not diffeomorphic
to ∂N and hence M is not diffeomorphic to N .
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