1. SMOOTH MAPS

Definition 1.0.1. Let M"™, N™ be smooth manifolds, possibly with bound-
ary. A map f: M — N is called smooth if for any p € M and any pa-
rameterization ¢: V' — U’ where U’ is open in N and contains f(p) there
exists a local parameterization on M : V — U where U is open in M
and p € U such that

(1) f(U) Cc U’ and
(2) o tofoyp: V— R™ is smooth.

Smooth maps from M to R are called smooth functions on M .
Lemma 1.0.2. Let f: M — N be a smooth map. Then f is continuous.

Proof.

Let W C N be open. We need to show that f~!(W) is open in M. Let
p € f7YW), ie. f(p) € W. Pick a parameterization : V, — U, on
N such that f(p) € U, C W. By definition of smoothness there exists a
local parameterization on M ¢: V, — U, such that p € U, and f(U,) C
U, C W. Then U, C f~}(W) and since U, is open in M we have that
1w = Upes—1(w)Up is open. O

The following criterion shows that it’s enough to check smoothness with
respect to given atlases on M and N

Proposition 1.0.3 (Criterion of smoothness). Let M™, N™ be manifolds,
possibly with boundary, and let {t: Vo, = Ustaca be an atlas on M and
{¢5s: Vi = Uslpen be an atlas on N.

then f: M — N is smooth if and only if for any «, 8 the set Uaﬂf_l(U/g)
is open in M and the map (¢l3)~" o fotha: (fotha) ' (Vh) — Vi CR™ is
smooth.

Proof. Suppose the map f satisfies the conditions of the proposition we need
to show that f is smooth. Let’s first check that f is continuous.

Let U’ C N be open. We want to show that that f~!(U’) is open in M.
Since U = Ug(U’ N Up) it’s enough to show that Y U'n Uj) is open for
every [3.

Thus, WLOG we can assume that U’ C Uj for some (3.

/

We are given that U’ is open in N. therefore (goﬁ)*l(U/) is open in Vj.

Likewise, since U, N f‘l(Ué) is open in M, the set Wag = ¢ {Us N
f_l(Ué)] =(fo ¢a)_1(VB’) is open in V.

We are given that the map (gob)*l ofothy: Wog — Vﬁ’ C R™ is smooth.
In particular, it’s continuous and therefore ((¢f3) "o fotha) ™ (¢h) T (U') =
(f 01q)~1(U") is open in V,. This holds for every a and hence f~1(U’) is
open in M.

This proves that f is continuous.
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We are now ready to check the definition of smoothness of f. Let p € M
and let p: V' — U’ be a parameterization on N where U’ is open in N and
contains f(p). let ¥5: V5 — Uj be some parameterization in our chosen
atlas on N such that f(p) € Uj.

Since f is continuous the set f_l(U’ﬁUé) isopenin M. let ¢y : Vo — U,
be a local parameterization on M such that p € U,. By changing U, to
Ua N 71U N Uj) we can assume that Uy C f~YU'n Ug)

We claim that this ¢ = 1, satisfies all the properties in the definition
of a smooth map. Condition (1) is now obvious. To check condition (2) we
first notice that the map (gp’ﬁ)_l o f o1, is smooth by the assumption of
the proposition.

Therefore the map ¢ ™' o fothy = (¢7' o)) o ((gplﬁ)_l o f o) is also
smooth as a composition of smooth maps.

This proves that f is smooth. The only if implication of the proposition
is left to the reader as an exercise. (]

The following properties of smooth maps easily follow from the definition

e A constant map f: M — N is smooth

e The identity map id: M — M is smooth

e Composition of smooth maps is smooth, that is if f: M — N and
g: N — P are smooth then go f: M — P is smooth

e Let f: M — N be smooth and let U C M be open. Then
flu: U — N is smooth.

e f=(f1,f2): M — Ny x Ny is smooth if and only if f;: M — N; is
smooth for i =1, 2.

e Let f,g: M — R be smooth functions. Then f+g, f-g are smooth
and g is smooth on U = {g # 0}

e (smoothness is a local) Let {Ua},ca be an open cover of M. Then
f: M — N is smooth if and only if f|y,: Uy — N is smooth for
every a.

If M is a regular level set then smoothness of maps from M can be easily
checked using the following proposition

Proposition 1.0.4. Let U C R** be open and let F: U — R* be s smooth
map and ¢ € R¥ be a regular value of F. Let M™ = {F = c}. Then the
inclusion i: M — R"% is a smooth map.

Proof. This is immediate from the definition of the smooth structure on M
and Proposition [1.0.3

Recall that a smooth atlas on M is defined as follows. Given a point
p € M after possibly renumbering coordinates in R"** we can assume
that F(x,y) satisfies det[g;? (p)] # 0. By the inverse function theorem
new p M is a graph of a smooth function y = y(x) and we have a local
parameterization 1, of M near p given by ¢,(x) = (z,y(z)). The collection
of all such 1, over p € M is an atlas on M. For an atlas on R™* we just
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take the identity map id: R*"** — R*¥_ It is now immediate that the
conditions of Proposition hold for these atlases and hence i: M —
R"™t* is a smooth map. O

Corollary 1.0.5. Under the assumptions of Proposition[I.0.4 suppose g: U —
N is smooth. Then g|pr: M — N is also smooth.

Proof. glar = g oi where i: M — R™* is the canonical inclusion. Hence
g|a is smooth as a composition of smooth maps. O

2. DIFFEOMORPHISMS

Definition 2.0.6. A map f: M — N is called a diffeomnorphism if f is a
bijection and both f and f~! are smooth.

Two manifolds M and N are called diffeomorphic if there exists a diffeo-
morphism f: M — N

Example 2.0.7.

(1) let M =R. Then f: R — R given by f(z) = 23 is not a diffeomor-
phism. It’s 1-1, onto an d smooth but the inverse map f~!(y) = N
is not smooth.

(2) Any two intervals (a,b) and (c,d) are diffeomorphic. For example
f(z) = E£(x — a) + ¢ is a diffeomorphism from (a,b) to (c,d)

(3) f(z) = e” gives a diffeomorphism from R to (0,00).

(4) f(x) =tanz gives a diffeomorphism from (—n/2,7/2) to R.

the following properties of diffeomorphisms easily follow from the defini-
tion

o Let {1pn: Vo — Ustaca be an atlas on M. Then ¢,: Vo — U, is
a diffeomorphism for any «.

o if f: M — N is a diffeomorphism then f~': N — M is also a
diffeomorphism

e The identity map id: M — M is a diffeomorphism

o if f: M —- N and g: N — P are diffeomorphisms then gof: M —
P is also a diffeomorphism.

o If f: M — N is a diffeomorphism and U C M is open then
flu: U — f(U) is also a diffeomorphism

o If f: M — N is a diffeomorphism then M is connected if and only
if N is connected

o If f: M — N is a diffeomorphism then M is compact if and only
if NV is compact

Theorem 2.0.8 (Diffeomorphism invariance of boundary). Let f: M — N
be a diffeomorphism. Then f(OM) = ON and flopr: OM — ON is a
diffeomorphism.

Proof. The proof is exactly the same as showing that a point in manifold
with boundary can not be an interior and boundary point at the same time.
The details are left to the reader as an exercise. (|
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Example 2.0.9. The closed Mébius band M and the cylinder N = S x[01]
are not diffeomorphic because OM = S and ON = S! x {0} U S x {1}.
Since M is connected and ON is not connected M is not diffeomorphic
to ON and hence M is not diffeomorphic to N.
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