PRACTICE PROBLEMS ON INTEGRATION AND STOKES **FORMULA**

- (1) Let M^n be a compact orientable manifold without boundary.
 - (a) Let $\omega \in \Omega^n(M)$ be an exact n-form. Prove that there is a point $x \in M$ such that $\omega(x) = 0$.
 - (b) Prove that $H_{DR}^n(M) \neq 0$.
- (2) Let M^n be a smooth manifold, let T^*M be its cotangent bundle and let $\pi \colon T^*M \to M$ be the canonical projection map. Define a 1-form α on T^*M as follows. Let $p \in M, \eta \in T_n^*(M)$. Look at $d\pi : T_{(p,\eta)}T^*M \to T_pM$. Set

$$\alpha(p,\eta) = d\pi^*(\eta)$$

(a) let $x : U \to V \subset \mathbb{R}^n$ be a local coordinate chart on M and let $(x,y)\mapsto \sum_{i=1}^n y^i dx^i$ be the corresponding local coordinates on

Prove that with respect to these local coordinates α has the form

$$\alpha(x,y) = \sum_{i=1}^{n} y^{i} dx^{i}$$

(b) Let $\omega = d\alpha$. Prove that $\underbrace{\omega \wedge \ldots \wedge \omega}_{n \text{ times}}$ is a nowhere zero 2n-form

- on T^*M . (This in particular implies that T^*M is orientable). (3) Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$ be a 2-form on $U = R^3 \setminus (0, 0, 0)$.
 - (a) Prove that $d\omega = 0$.

Hint: One way to simplify the computation is to write $\omega = f \cdot \tilde{\omega}$ where $f = \frac{1}{(x^2 + y^2 + z^2)^{3/2}}$ and $\tilde{\omega} = x dy \wedge dz + y dz \wedge dx + z dx$.

- Another way is to use spherical coordinates on $\mathbb{R}^3 \setminus \{0\}$. (b) Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + y^2 + z^2 = 1\}$ with the orientation induced from $B^3 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that }$ $x^2 + y^2 + z^2 \le 1$. Let $i: S^2 \to \mathbb{R}^3$ be the canonical inclusion. Show that $i^*(\omega)$ is nowhere zero on S^2 .
- (c) Show that ω is not exact on U.
- (4) Let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x,y) = (e^{2y},2x+y)$ and let $\omega =$ $x^2ydx + ydy$.

Compute $f^*(d\omega)$ and $d(f^*(\omega))$ and verify that they are equal.

- (5) Let $M^2 \subset \mathbb{R}^3$ be the torus of revolution obtained by rotating the circle $(x-2)^2 + z^2 = 1$ in the xz plane around the yz axis.
 - (a) Prove that M^2 is orientable

- (b) Consider the orientation on M induced by the normal field N where N(3,0,0)=(1,0,0). Find $\int_{-\infty}^{\infty} x du \wedge dz$.
- Find $\int_M x dy \wedge dz$. (6) Let $M^3 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } 6 \leq 2x^2 + y^2 + 3z^2 \leq 7 \}$ with the orientation induced from R^3 .
 - (a) Show that M is a manifold with boundary.
 - (b) Let p = (1, 1, 1). Check that $p \in \partial M$ and find a positive basis of $T_p \partial M$ with respect to the orientation of ∂M induced from M.
- (7) Let a, b > 0 and Let $M \subset \mathbb{R}^2$ be the ellipse $\{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$ with the orientation induced by the standard orientation on $\{\frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1\}$. Find $\int_M (\cos x) y dx + (x + \sin(x)) dy$.