- (1) Give the following definitions
 - (a) A tangent vector to a smooth manifold.
 - (b) A smooth manifold with boundary.
- (2) Let $f: \mathbb{RP}^n \to \mathbb{R}$ be given by $f([x_0:x_1:\ldots:x_n]) = \frac{x_n^2}{x_0^2 + x_1^2 + \ldots + x_n^2}$.
 - (a) Show that f is well defined and smooth.
 - (b) Show that the set $\{f = 1/2\}$ is nonempty and carries a natural structure of a manifold of dimension n-1.

(3) Mark **True or False**.

Let M, N be smooth manifolds.

- (a) A submersion $f: M \to N$ is onto.
- (b) A smooth embedding $f: M \to N$ is a closed map.
- (c) If a smooth map $f: M \to N$ is injective then it's an immersion.
- (d) A local diffeomorphism which is 1-1 and onto is a diffeomorphism.
- (e) \mathbb{S}^1 is diffeomorphic to \mathbb{RP}^1 .
- (f) Composition of two maps of constant rank has constant rank.
- (4) Let M^n, N^m be smooth manifolds such that n > m. Let $f: M^n \to N^m$ be a smooth map. Prove that f is not 1 - 1.

Hint: Use the constant rank theorem.

(5) Define a map $f: \mathbb{S}^2 \to \mathbb{R}^4$ given by $F(x, y, z) = (x^2 - y^2, xy, xz, yz)$. Show that F induces a well defined smooth map $\overline{F}: \mathbb{RP}^2 \to \mathbb{R}^4$ and prove that \overline{F} is an embedding.