Solutions to selected problems from homework 2

(1) Problem 2-5b from the book. Let $x: \mathbb{R} \to \mathbb{R}$ be given by $x(t) = t^3$. This is a homeomorphism and hence defines a smooth structure on \mathbb{R} denoted by $\tilde{\mathbb{R}}$ given by a single chart x. Note that the parameterization $\phi = x^{-1}$ is given by $\phi(x) = x^{1/3}$.

Consider a smooth function $f: \mathbb{R} \to \mathbb{R}$. Prove that f is smooth with respect to the smooth structure $\tilde{\mathbb{R}}$ on the domain iff $f^{(n)}(0) = 0$ for any n not divisible by 3.

Solution

First, suppose f is smooth as a map $f: \mathbb{R} \to \mathbb{R}$. This means that $f \circ \phi: \mathbb{R} \to \mathbb{R}$ is smooth in ordinary sense. I.e. $g(x) = f(\sqrt[3]{x})$ is smooth on \mathbb{R} . Then $g(x^3) = f(x)$. Differentiating we get $f'(x) = g'(x^3) \cdot 3x^2$, $f''(x) = g''(x^3) \cdot 9x^4 + g'(x^3) \cdot 6x$. Plugging in x = 0 we get that f'(0) = 0 and f''(0) = 0. The case of a general derivative follows by induction by repeatedly differentiating the above formula.

Now suppose f is smooth in ordinary sense and satisfies $f^{(n)}(0) = 0$ for any n not divisible by 3.

We need to prove that $g(x) = f(\sqrt[3]{x})$ is smooth. Clearly g is smooth on $\mathbb{R}\setminus\{0\}$ as a composition of smooth functions. Thus, the only issue is to verify that g is smooth at 0.

Since f'(0) = 0, f''(0) = 0 we have that f'(x) has first derivative 0 at 0 and therefore f'(x) can be written $f'(x) = x^2h(x)$ where h is smooth on \mathbb{R} . Moreover, Taylor series of f' at 0 is obtained from the Taylor series of h by multiplying by x^2 . Therefore h satisfies the same condition on its derivatives as f, i.e. $h^{(n)}(0) = 0$ for any n not divisible by 3. Next, we can write $f(x) = f(0) + \int_0^x f'(t)dt$ and hence $g(x) = f(\sqrt[3]{x}) = f(0) + \int_0^{\sqrt[3]{x}} f'(t)dt$. Using the change of variables $t = \sqrt[3]{y}$ this gives $g(x) = f(0) + \int_0^{\sqrt[3]{x}} f'(t)dt = f(0) + \int_0^x f'(\sqrt[3]{y}) \frac{1}{3\sqrt[3]{y^2}} dy$. Recalling that $f'(x) = x^2h(x)$ this gives $g(x) = f(0) + \int_0^x h(\sqrt[3]{y}) \frac{1}{3\sqrt[3]{y^2}} dy = f(0) + \int_0^x \sqrt[3]{y^2}h(\sqrt[3]{y}) \frac{1}{3\sqrt[3]{y^2}} dy = f(0) + \int_0^x h(\sqrt[3]{y}) \frac{1}{3\sqrt[3]{y^2}} dy = f(0) + \int_0^x h(\sqrt[3]{y}) \frac{1}{3\sqrt[3]{y^2}} dy = f(0) + \int_0^x 1(y) dy$ where $u(y) = h(\sqrt[3]{y})/3$. Since u(y) is continuous this implies that g is C^1 . However, the same argument applies to u(y) because both f and h satisfy the same condition on their derivatives. Hence u(y) is also C^1 which in turn implies that g is C^2 . Repeatedly applying the same argument gives that g is C^k for any k.

(2) Let $U(n) = \{A \in M(n \times n, \mathbb{C}) | \text{ such that } A \cdot A^* = Id\}$. Prove that U(n) is a smooth manifold.

Hint. Consider the map $F: M(n \times n, \mathbb{C}) \to M(n \times n, \mathbb{C})$ given by $F(A) = A \cdot A^*$. Then $U(n) = \{F = Id\}$. Notice that F(A) is always self-adjoint.

Solution

Let $M(n \times n, \mathbb{C})$ be the space of all $n \times n$ matrices with complex coefficients. It's naturally isomorphic to $\mathbb{C}^{n^2} \cong \mathbb{R}^{2n^2}$. Let $S(n \times n, \mathbb{C})$ be the real vector space of all self-adjoint $n \times n$ complex matrices. Then it's easy to see that $S(n \times n, \mathbb{C}) \cong \mathbb{R}^{n^2}$.

Consider the map $F: M(n \times n, \mathbb{C}) \to M(n \times n, \mathbb{C})$ given by $F(A) = A \cdot A^*$. Note that $(A \cdot A^*)^* = A^{**} \cdot A^* = A \cdot A^*$. Thus F(A) is always self-adjoint and we can view F as a map $F: \mathbb{R}^{2n^2} \cong M(n \times n, \mathbb{C}) \to S(n \times n, \mathbb{C}) \cong \mathbb{R}^{n^2}$. Then $U(n) = \{F = Id\}$. We claim that Id is a regular value of F.

Clearly F is smooth because it's given by polynomial equations in coordinates. Let us compute the differential of F at $A \in M(n \times n, \mathbb{C})$. Since F is smooth we have that for any $X \in M(n \times n, \mathbb{C}), A \in$ U(n) the value of $dF_A(X)$ is equal to the directional derivative $D_X F(A) = \lim_{t\to 0} \frac{F(A+tX)-F(A)}{t} = \lim_{t\to 0} \frac{(A+tX)(A^*+tX^*)-AA^*}{t} =$ $\lim_{t\to 0} \frac{AA^*+t(AX^*+X^*A)+t^2XX^*-AA^*}{t} = AX^* + XA^*.$ we need to show that $df_A: M(n \times n, \mathbb{C}) \to S(n \times n, \mathbb{C})$ is onto for

we need to show that $df_A: M(n \times n, \mathbb{C}) \to S(n \times n, \mathbb{C})$ is onto for any $A \in U(n)$. Given any $B \in S(n \times n, \mathbb{C})$ set $X = \frac{B(A^*)^{-1}}{2}$. Then $dF_A(X) = AX^* + XA^* = A[\frac{B(A^*)^{-1}}{2}]^* + \frac{B(A^*)^{-1}}{2}A^* = A[\frac{A^{-1}B^*}{2}] + \frac{B}{2} = B$ where in the last equality we used that $B = B^*$. Thus dF_A is onto for any $A \in U(n)$ and hence U(n) is a manifold of dimension $2n^2 - n^2 = n^2$.

(3) Let $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}\mathbb{P}^n$ be the canonical projection map $\pi(z_0, \ldots, z_n) = [z_0:\ldots:z_n]$. Let M be a smooth manifold and let $f: \mathbb{C}\mathbb{P}^n \to M$ be a map.

Prove that f is smooth if and only if $f \circ \pi \colon \mathbb{C}^{n+1} \setminus \{0\} \to M$ is smooth.

Solution

Since $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ is smooth it's obvious that if f is smooth then $f \circ \pi$ is also smooth as a composition of two smooth maps.

Now suppose $f \circ \pi$ is smooth and we need to show that f is smooth. Since smoothness is a local condition it's enough to show that $f|_{U_i}$ is smooth for every i where $U_i = \{[z_1 : \ldots : z_{n+1}] | z_i \neq 0\}, i = 1, \ldots, n+1$ is the standard atlas on \mathbb{CP}^n . We will only do it for i = n+1. the other is are treated in exactly the same way. We have a local smooth chart $x: U_{n+1} \to \mathbb{C}^n$ given by $x([z_1 : \ldots : z_{n+1}]) = (z_1/z_{n+1}, \ldots, z_n/z_{n+1})$ with the inverse local parameterization $\phi = x^{-1}$ given by $\phi(u_1, \ldots, u_n) = [u_1 : \ldots : u_n : 1]$. Consider the following "section" map $s: U_{n+1} \to \mathbb{C}^{n+1} \setminus \{0\}$ given by $s(z_1:\ldots:z_n:z_{n+1}) = (z_1/z_{n+1},\ldots,z_n/z_{n+1},1)$. It's immediate to check that this map is well defined. Also $s \circ \phi = \phi$ which means that s is smooth. Lastly, $\pi \circ s = id|_{U_{n+1}}$. Therefore, $f|_{U_{n+1}} = f \circ (\pi \circ s) = (f \circ \pi) \circ s$ is smooth as a composition of two smooth maps.