
Solutions to selected problems from homework 2

(1) Problem 2-5b from the book. Let x : R → R be given by x(t) = t3.
This is a homeomorphism and hence defines a smooth structure on
R denoted by R̃ given by a single chart x. Note that the parameter-
ization φ = x−1 is given by φ(x) = x1/3.

Consider a smooth function f : R → R. Prove that f is smooth
with respect to the smooth structure R̃ on the domain iff f (n)(0) = 0
for any n not divisible by 3.

Solution

First, suppose f is smooth as a map f : R̃ → R. This means that
f ◦ φ : R → R is smooth in ordinary sense. I.e. g(x) = f( 3

√
x) is

smooth on R. Then g(x3) = f(x). Differentiating we get f ′(x) =
g′(x3) · 3x2, f ′′(x) = g′′(x3) · 9x4 + g′(x3) · 6x. Plugging in x = 0 we
get that f ′(0) = 0 and f ′′(0) = 0. The case of a general derivative
follows by induction by repeatedly differentiating the above formula.

Now suppose f is smooth in ordinary sense and satisfies f (n)(0) =
0 for any n not divisible by 3.

We need to prove that g(x) = f( 3
√
x) is smooth. Clearly g is

smooth on R\{0} as a composition of smooth functions. Thus, the
only issue is to verify that g is smooth at 0.

Since f ′(0) = 0, f ′′(0) = 0 we have that f ′(x) has first derivative
0 at 0 and therefore f ′(x) can be written f ′(x) = x2h(x) where h
is smooth on R. Moreover, Taylor series of f ′ at 0 is obtained from
the Taylor series of h by multiplying by x2. Therefore h satisfies
the same condition on its derivatives as f , i.e. h(n)(0) = 0 for any
n not divisible by 3. Next, we can write f(x) = f(0) +

∫ x
0 f
′(t)dt

and hence g(x) = f( 3
√
x) = f(0) +

∫ 3√x
0 f ′(t)dt. Using the change

of variables t = 3
√
y this gives g(x) = f(0) +

∫ 3√x
0 f ′(t)dt = f(0) +∫ x

0 f
′( 3
√
y) 1

3 3
√

y2
dy. Recalling that f ′(x) = x2h(x) this gives g(x) =

f(0) +
∫ x
0 f
′( 3
√
y) 1

3 3
√

y2
dy = f(0) +

∫ x
0

3
√
y2h( 3
√
y) 1

3 3
√

y2
dy = f(0) +∫ x

0 h( 3
√
y)/3dy = f(0)+

∫ x
0 u(y)dy where u(y) = h( 3

√
y)/3. Since u(y)

is continuous this implies that g is C1. However, the same argument
applies to u(y) because both f and h satisfy the same condition on
their derivatives. Hence u(y) is also C1 which in turn implies that
g is C2. Repeatedly applying the same argument gives that g is Ck

for any k.
(2) Let U(n) = {A ∈ M(n × n,C)| such that A · A∗ = Id}. Prove that

U(n) is a smooth manifold.
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Hint. Consider the map F : M(n×n,C)→M(n×n,C) given by
F (A) = A ·A∗. Then U(n) = {F = Id}. Notice that F (A) is always
self-adjoint.

Solution

Let M(n× n,C) be the space of all n× n matrices with complex

coefficients. It’s naturally isomorphic to Cn2 ∼= R2n2
. Let S(n×n,C)

be the real vector space of all self-adjoint n × n complex matrices.

Then it’s easy to see that S(n× n,C) ∼= Rn2
.

Consider the map F : M(n×n,C)→M(n×n,C) given by F (A) =
A ·A∗. Note that (A ·A∗)∗ = A∗∗ ·A∗ = A ·A∗. Thus F (A) is always

self-adjoint and we can view F as a map F : R2n2 ∼= M(n×n,C)→
S(n × n,C) ∼= Rn2

. Then U(n) = {F = Id}. We claim that Id is a
regular value of F .

Clearly F is smooth because it’s given by polynomial equations in
coordinates. Let us compute the differential of F at A ∈M(n×n,C).
Since F is smooth we have that for any X ∈ M(n × n,C), A ∈
U(n) the value of dFA(X) is equal to the directional derivative

DXF (A) = limt→0
F (A+tX)−F (A)

t = limt→0
(A+tX)(A∗+tX∗)−AA∗

t =

limt→0
AA∗+t(AX∗+X∗A)+t2XX∗−AA∗

t = AX∗ +XA∗.
we need to show that dfA : M(n×n,C)→ S(n×n,C) is onto for

any A ∈ U(n). Given any B ∈ S(n × n,C) set X = B(A∗)−1

2 . Then

dFA(X) = AX∗+XA∗ = A[B(A∗)−1

2 ]∗+B(A∗)−1

2 A∗ = A[A
−1B∗

2 ]+B
2 =

B where in the last equality we used that B = B∗. Thus dFA is
onto for any A ∈ U(n) and hence U(n) is a manifold of dimension
2n2 − n2 = n2.

(3) Let π : Cn+1\{0} → CPn be the canonical projection map π(z0, . . . , zn) =
[z0 : . . . : zn]. Let M be a smooth manifold and let f : CPn →M be
a map.

Prove that f is smooth if and only if f ◦ π : Cn+1\{0} → M is
smooth.

Solution

Since π : Cn+1\{0} → CPn is smooth it’s obvious that if f is
smooth then f ◦ π is also smooth as a composition of two smooth
maps.

Now suppose f◦π is smooth and we need to show that f is smooth.
Since smoothness is a local condition it’s enough to show that f |Ui

is smooth for every i where Ui = {[z1 : . . . : zn+1]|zi 6= 0}, i =
1, . . . , n + 1 is the standard atlas on CPn. We will only do it for
i = n+ 1. the other is are treated in exactly the same way. We have
a local smooth chart x : Un+1 → Cn given by x([z1 : . . . : zn+1]) =
(z1/zn+1, . . . , zn/zn+1) with the inverse local parameterization φ =
x−1 given by φ(u1, . . . , un) = [u1 : . . . : un : 1].
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Consider the following ”section” map s : Un+1 → Cn+1\{0} given
by s(z1 : . . . : zn : zn+1) = (z1/zn+1, . . . , zn/zn+1, 1). It’s immediate
to check that this map is well defined. Also s ◦ φ = φ which means
that s is smooth. Lastly, π ◦ s = id|Un+1 . Therefore, f |Un+1 =
f ◦ (π ◦ s) = (f ◦ π) ◦ s is smooth as a composition of two smooth
maps.


