
Solutions to selected problems from homework 3

(1) Problem 2-14 from the book:
Suppose A and B are disjoint closed subsets of a smooth manifold

M . Show that there exists f ∈ C∞(M) such that 0 ≤ f(x) ≤ 1 for
any x ∈M , f−1(0) = A and f−1(1) = B.

Solution

By Theorem 2.29 from the book there exist smooth nonnegative
functions fA, fB on M such that f−1

A (0) = A and f−1
B (1) = B. It’s

immediate to check that f(x) = fA(x)
fA(x)+fB(x) satisfies the required

properties.
(2) Prove that there exists a diffeomorphism f : [0, 1) → [0,∞) such

that f(x) = x for small x.

Solution

Let us first construct a smooth function g : [0, 1) → R such that

g(t) > 0 for any t, g(t) = 1 for small t and
∫ 1

0 g(t)dt =∞.

Let g1(t) = 1
1−t . Note that g1 > 0 on [0, 1) and

∫ 1
1−ε g1(t)dt = ∞

for any 0 < ε < 1. Pick ε < 1/2. Let φ : R → R be a smooth
nonnegative bump function centered at 1. I.e. φ ≥ 0, supp(φ) =
[1− ε, 1 + ε] and φ(t) ≡ 1 on [1− ε/2, 1 + ε/2].

Let g(t) = 1+φ(t)g1(t). It’s immediate to check that g(t) satisfies
all the required conditions.

Now set f(x) =
∫ x

0 g(t)dt. Then f(x) is smooth, f(x) = x for
small x, f(x) is strictly increasing and limx→1 f(x) = ∞. This
means that f : [0, 1)→ [0,∞) is a smooth bijection. Moreover, since
f ′(x) = g(x) > 0 for any x we have that f is a local diffeomorphism
by the Inverse Function Theorem. Thus f−1 is also smooth and
hence f is a diffeomorphism.

(3) Look at the surface of revolution M2 in R3 obtained by rotating the
circle of radius 1 centered at (2, 0) around the vertical axes.
(a) Verify that it’s given by the equation

(
√
x2 + y2 − 2)2 + z2 = 1

and that M is a smooth manifold.
(b) Prove that M is diffeomorphic to S1 × S1.

Solution

Note that (0, 0, 0) does not satisfy (
√
x2 + y2−2)2 +z2 = 1. Thus to

see (a) it is enough to verify that 1 is a regular value of f : R3\{0} →
R given by f(x, y, z) = (

√
x2 + y2−2)2+z2. We compute ∂

∂xf(x, y, z) =

2(
√
x2 + y2 − 2) x√

x2+y2
, ∂
∂yf(x, y, z) = 2(

√
x2 + y2 − 2) y√

x2+y2
,

∂
∂zf(x, y, z) = 2z.
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Suppose df(x,y,z) = 0 for some (x, y, z) satisfying f(x, y, z) = 1.

Then 0 = ∂
∂zf(x, y, z) = 2z. Hence z = 0. Since f(x, y, z) = 1

this implies that (
√
x2 + y2 − 2)2 = 1. Therefore ∂

∂xf(x, y, z) =

0, ∂∂yf(x, y, z) = 0 imply that x = y = 0. Thus, x = y = z = 0. This

is a contradiction since (0, 0, 0) does not satisfy (
√
x2 + y2 − 2)2 +

z2 = 1. Therefore, M = {(
√
x2 + y2 − 2)2 + z2 = 1} is a smooth

2-dimensional manifold.
Next, consider the map F : R2 → R3 given by F (θ, φ) = ((2 +

cos θ) cosφ, (2 + cos θ) sinφ, sin θ). It’s easy to see that F (R2) = M .
Clearly, F (θ+ n, φ+m) = F (θ, φ) for any (m,n) ∈ Z2 and hence

F induces a well defined map F̄ : T 2 ∼= R2/Z2 →M . It’s easy to see
that F̄ is 1-1.

We claim that F̄ : T 2 →M is a diffeomorphism. Since F̄ is 1− 1
it’s enough to show that it’s a local diffeomorphism. To see this it’s
enough to show that dF̄p : TpT

2 → TF (p)M is an injective for any

p ∈ T 2. Indeed, Since dimT 2 = dimM = 2 this implies that dF̄p is
an isomorphism for any p ∈ T 2 and hence F is a local diffeomorphism
by the Inverse Function theorem.

Let i : M → R3 be the inclusion map. To see that dF̄p : TpT
2 →

TF (p)M is injective it’s enough to check that diF̄ (p) ◦ dF̄p = d(i ◦ F̄ )p
is injective. Thus, it’s enough to check that dF̄p is injective when
F̄ is viewed as a map T 2 → R3 and since the canonical projection
π : R2 → T 2 is a local diffeomorphism it’s enough to check that
dF(θ,φ) : R2 → R3 is injective for every (θ, φ) ∈ R2.

We compute

∂F

∂θ
= (− sin θ cosφ,− sin θ sinφ, cos θ),

∂F

∂φ
= (−(2+cos θ) sinφ, 2+cos θ) cosφ, 0)

Therefore,

∂F

∂θ
× ∂F

∂φ
= det

 − sin θ cosφ − sin θ sinφ cos θ
−(2 + cos θ) sinφ (2 + cos θ) cosφ 0

i j k

 =

= ((2 + cos θ) cosφ cos θ,−(2 + cos θ) sinφ cos θ,−(2 + cos θ) sin θ)

Therefore, |∂F∂θ ×
∂F
∂φ |

2 = (2 + cos θ)2 6= 0 for any (θ, φ). Thus ∂F
∂θ ,

∂F
∂φ are linearly independent for any (θ, φ) i.e. dF(θ,φ) : R2 → R3 is

injective for every (θ, φ) ∈ R2. �.


