Solutions to selected problems from homework 3

(1) Problem 2-14 from the book:

Suppose A and B are disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \leq f(x) \leq 1$ for any $x \in M$, $f^{-1}(0) = A$ and $f^{-1}(1) = B$.

Solution

By Theorem 2.29 from the book there exist smooth nonnegative functions f_A , f_B on M such that $f_A^{-1}(0) = A$ and $f_B^{-1}(1) = B$. It's immediate to check that $f(x) = \frac{f_A(x)}{f_A(x) + f_B(x)}$ satisfies the required properties.

(2) Prove that there exists a diffeomorphism $f: [0,1) \to [0,\infty)$ such that f(x) = x for small x.

Solution

Let us first construct a smooth function $g: [0,1) \to \mathbb{R}$ such that g(t) > 0 for any t, g(t) = 1 for small t and $\int_0^1 g(t) dt = \infty$.

Let $g_1(t) = \frac{1}{1-t}$. Note that $g_1 > 0$ on [0,1) and $\int_{1-\epsilon}^1 g_1(t)dt = \infty$ for any $0 < \epsilon < 1$. Pick $\epsilon < 1/2$. Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be a smooth nonnegative bump function centered at 1. I.e. $\phi \ge 0$, $\operatorname{supp}(\phi) = [1-\epsilon, 1+\epsilon]$ and $\phi(t) \equiv 1$ on $[1-\epsilon/2, 1+\epsilon/2]$.

Let $g(t) = 1 + \phi(t)g_1(t)$. It's immediate to check that g(t) satisfies all the required conditions.

Now set $f(x) = \int_0^x g(t)dt$. Then f(x) is smooth, f(x) = x for small x, f(x) is strictly increasing and $\lim_{x\to 1} f(x) = \infty$. This means that $f: [0,1) \to [0,\infty)$ is a smooth bijection. Moreover, since f'(x) = g(x) > 0 for any x we have that f is a local diffeomorphism by the Inverse Function Theorem. Thus f^{-1} is also smooth and hence f is a diffeomorphism.

- (3) Look at the surface of revolution M^2 in \mathbb{R}^3 obtained by rotating the circle of radius 1 centered at (2,0) around the vertical axes.
 - (a) Verify that it's given by the equation

$$(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1$$

and that M is a smooth manifold.

(b) Prove that M is diffeomorphic to $S^1 \times S^1$.

Solution

Note that (0,0,0) does not satisfy $(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1$. Thus to see (a) it is enough to verify that 1 is a regular value of $f : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ given by $f(x, y, z) = (\sqrt{x^2 + y^2} - 2)^2 + z^2$. We compute $\frac{\partial}{\partial x} f(x, y, z) = 2(\sqrt{x^2 + y^2} - 2)\frac{x}{\sqrt{x^2 + y^2}}, \frac{\partial}{\partial y} f(x, y, z) = 2(\sqrt{x^2 + y^2} - 2)\frac{y}{\sqrt{x^2 + y^2}}, \frac{\partial}{\partial z} f(x, y, z) = 2z$.

Suppose $df_{(x,y,z)} = 0$ for some (x, y, z) satisfying f(x, y, z) = 1. Then $0 = \frac{\partial}{\partial z} f(x, y, z) = 2z$. Hence z = 0. Since f(x, y, z) = 1 this implies that $(\sqrt{x^2 + y^2} - 2)^2 = 1$. Therefore $\frac{\partial}{\partial x} f(x, y, z) = 0$, $\frac{\partial}{\partial y} f(x, y, z) = 0$ imply that x = y = 0. Thus, x = y = z = 0. This is a contradiction since (0, 0, 0) does not satisfy $(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1$. Therefore, $M = \{(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\}$ is a smooth 2-dimensional manifold.

Next, consider the map $F \colon \mathbb{R}^2 \to \mathbb{R}^3$ given by $F(\theta, \phi) = ((2 + \cos \theta) \cos \phi, (2 + \cos \theta) \sin \phi, \sin \theta)$. It's easy to see that $F(\mathbb{R}^2) = M$.

Clearly, $F(\theta + n, \phi + m) = F(\theta, \phi)$ for any $(m, n) \in \mathbb{Z}^2$ and hence F induces a well defined map $\overline{F}: T^2 \cong \mathbb{R}^2/\mathbb{Z}^2 \to M$. It's easy to see that \overline{F} is 1-1.

We claim that $\overline{F}: T^2 \to M$ is a diffeomorphism. Since \overline{F} is 1-1 it's enough to show that it's a local diffeomorphism. To see this it's enough to show that $d\overline{F}_p: T_pT^2 \to T_{F(p)}M$ is an injective for any $p \in T^2$. Indeed, Since dim $T^2 = \dim M = 2$ this implies that $d\overline{F}_p$ is an isomorphism for any $p \in T^2$ and hence F is a local diffeomorphism by the Inverse Function theorem.

Let $i: M \to \mathbb{R}^3$ be the inclusion map. To see that $d\bar{F}_p: T_p T^2 \to T_{F(p)}M$ is injective it's enough to check that $di_{\bar{F}(p)} \circ d\bar{F}_p = d(i \circ \bar{F})_p$ is injective. Thus, it's enough to check that $d\bar{F}_p$ is injective when \bar{F} is viewed as a map $T^2 \to \mathbb{R}^3$ and since the canonical projection $\pi: \mathbb{R}^2 \to T^2$ is a local diffeomorphism it's enough to check that $dF_{(\theta,\phi)}: \mathbb{R}^2 \to \mathbb{R}^3$ is injective for every $(\theta, \phi) \in \mathbb{R}^2$.

We compute

$$\frac{\partial F}{\partial \theta} = (-\sin\theta\cos\phi, -\sin\theta\sin\phi, \cos\theta), \\ \frac{\partial F}{\partial \phi} = (-(2+\cos\theta)\sin\phi, 2+\cos\theta)\cos\phi, 0)$$

Therefore,

$$\frac{\partial F}{\partial \theta} \times \frac{\partial F}{\partial \phi} = \det \begin{pmatrix} -\sin\theta\cos\phi & -\sin\theta\sin\phi & \cos\theta \\ -(2+\cos\theta)\sin\phi & (2+\cos\theta)\cos\phi & 0 \\ i & j & k \end{pmatrix} =$$

 $= ((2 + \cos \theta) \cos \phi \cos \theta, -(2 + \cos \theta) \sin \phi \cos \theta, -(2 + \cos \theta) \sin \theta)$ Therefore, $|\frac{\partial F}{\partial \theta} \times \frac{\partial F}{\partial \phi}|^2 = (2 + \cos \theta)^2 \neq 0$ for any (θ, ϕ) . Thus $\frac{\partial F}{\partial \theta}$, $\frac{\partial F}{\partial \phi}$ are linearly independent for any (θ, ϕ) i.e. $dF_{(\theta, \phi)} \colon \mathbb{R}^2 \to \mathbb{R}^3$ is injective for every $(\theta, \phi) \in \mathbb{R}^2$. \Box .