(1) Let V be a smooth vector field on a smooth manifold M without boundary. Let $p \in M$ and suppose $V(p) \neq 0$.

Prove that there exist local coordinates x on an open set U containing p such that in these coordinates $V \equiv \frac{\partial}{\partial x_1}$.

Hint: Use an argument similar to the proof of the collar neighbourhood theorem.

(2) Let $\sigma \in S_{k+l}$ be the following permutation

$$\sigma = \begin{pmatrix} 1 & \cdots & k & k+1 & \cdots & k+l \\ l+1 & \cdots & l+k & 1 & \cdots & l \end{pmatrix}$$

Show that $\operatorname{sign}(\sigma) = (-1)^{kl}$

- (3) Let V be a vector space of dimension n. An alternating k-tensor ω on V is called *decomposable* if it can be written as $\omega = \eta \wedge \nu$ where η and ν have degrees smaller than ω .
 - (a) Let $V = \mathbb{R}^4$ and $\omega = e^{12} + e^{34}$. Prove that ω is not decomposable.
 - (b) Let $V = \mathbb{R}^n$ where $n \ge 4$ and $\omega = e^{12} + e^{34}$. Prove that ω is not decomposable.

Hint: Given $\omega \in \Lambda^{n-2}(\mathbb{R}^n)$ consider the map $L_{\omega} \colon \Lambda^1(\mathbb{R}^n) \to \Lambda^{n-1}(\mathbb{R}^n)$ given by $L_{\omega}(\eta) = \omega \wedge \eta$. Look at the dimension of ker L_{ω} .

- (4) Let V, W be finite-dimensional vector spaces and let $f: V \to W$ be a linear map. Using the definition of wedge product given in class prove that $f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$ for any alternating tensors ω, η on W.
- (5) Let M^n be a smooth manifold. Let $\pi: \Lambda^k(M) = \to M$ be the canonical projection. Let $\omega: M \to \Lambda^k(M)$ be a section of π , i.e. a map satisfying $\pi \circ \omega = id_M$. Such ω is called a differential form on M. Prove that the following conditions are equivalent
 - (a) ω is a smooth map
 - (b) in any local coordinate chart $x \colon U \to V$ where $U \subset M, V \subset \mathbb{R}^n$ are open when we write ω as $\omega = \sum_I \omega_I(x) dx^I$ then all $\omega^I(x)$ are smooth functions.
 - (c) for any smooth vector fields $V_1, \ldots V_k$ on M the function $f: M \to \mathbb{R}$ given by $f(p) = \omega(p)(V_1(p), \ldots V_k(p))$ is smooth.
- (6) Let $U \subset \mathbb{R}^n$ be open and let $V_1, \ldots V_n$ be smooth vector fields on U such that for any $x \in U, V_1(x), \ldots V_n(x)$ is a basis of \mathbb{R}^n .

Let w_1, \ldots, w_n be the dual collection of 1 forms, i.e. for any $x \in U$ $w_1(x), \ldots, w_n(x)$ is the unique n-tuple of elements of $(\mathbb{R}^n)^*$ satisfying $w_i(x)(V_j(x)) = \delta_{ij}$.

Prove that all w_i are smooth.