
Solutions to selected problems from homework 7

(1) Let V be a smooth vector field on a smooth manifold M without
boundary. Let p ∈M and suppose V (p) 6= 0.

Prove that there exist local coordinates x on an open set U con-
taining p such that in these coordinates V ≡ ∂

∂x1
.

Hint: Use an argument similar to the proof of the collar neigh-
bourhood theorem.

Solution

Since the question is local we can assume that M = U is an open
set in Rn and p = 0. Let N = V (p)⊥ ∼= Rn−1. Let Φ: (−ε, ε)×N →
Rn be the the integral flow of V restricted to N .

Since φ0(x) = x for any x we have that dΦ(0,p)(0, v) = v for any

v ∈ N . Also, by definition of the flow we have that dΦ(0,p)(
∂
∂t , 0) =

V (p). Since V (p) /∈ N and dimM = dim(R × N) = n this implies
that dΦ(0,p) is an isomorphism. Therefore, by the Inverse Function
Theorem, there is an open neighbourhood Up ⊂ N containing p and
ε1 > 0 such that φ|(−ε1,ε1)×Up

is a diffeomorphism onto its image

which is an open neighbourhood of p in M . By construction x = Φ−1

has the desired properties.

(2) Let V be a vector space of dimension n. An alternating k-tensor ω
on V is called decomposable if it can be written as ω = η ∧ ν where
η and ν have degrees smaller than ω.
(a) Let V = R4 and ω = e12 + e34. Prove that ω is not decompos-

able.
(b) Let V = Rn where n ≥ 4 and ω = e12 + e34. Prove that ω is

not decomposable.
Hint: Given ω ∈ Λn−2(Rn) consider the map Lω : Λ1(Rn) →
Λn−1(Rn) given by Lω(η) = ω ∧ η. Look at the dimension of
kerLω.

Solution

Let us prove part (a) first. Let V = R4.
Consider the map Lω : Λ1(V ∗)→ Λ3(V ∗) given by Lω(η) = ω∧η.
We know that e1, e2, e3, e4 is a basis of Λ1(V ∗) and e234, e134, e124, e123

is a basis Λ3(V ∗). Direct computation shows that
Lω(e1) = (e12+e34)∧e1 = 0+e341 = e134, Lω(e2) = e234, Lω(e3) =

e123, Lω(e4) = e124. This means that Lω is onto and since dim Λ1(V ∗) =
Λ3(V ∗) = 4, Lω is an isomorphism. In particular, kerLω = 0.

Now suppose ω is decomposable. Then it can be written as ω =
ω1 ∧ ω2 for some nonzero (in fact, linearly independent) ω1, ω2 ∈
Λ1(V ∗). Then Lω(ω1) = ω1 ∧ ω1 ∧ ω2. Hence kerLω 6= 0.

1



2

This is a contradiction and hence ω is not decomposable which
proves part (a).

Let us now show that the same ω is not decomposable for V = Rn

for n > 4.
Let ω̃ = ω ∧ e56...n = e1256...n + e3456...n 6= 0. Consider the map

Lω̃ : Λ1(V ∗) → Λn−1(V ∗) given by Lω̃(η) = ω̃ ∧ η. As before, it’s
easy to see that image of Lω̃ has dimension 4 and hence dim kerLω̃ =
n− 4. Now suppose that ω is decomposable and ω = ω1 ∧ ω2. Then
arguing as before it’s easy to see that dim kerLω̃ > n− 4. This is a
contradiction and hence ω is indecomposable. �

(3) Let V,W be finite-dimensional vector spaces and let f : V → W be
a linear map. Using the definition of wedge product given in class
prove that f∗(ω∧η) = f∗(ω)∧f∗(η) for any alternating tensors ω, η
on W .

Solution

By linearity it’s enough to prove that for any I = (i1, . . . , ik) it
holds that f∗(eI) = f∗(ei1)∧ . . .∧ f∗(eik). Let’s evaluate both sides
of this formula on v1, . . . , vk.

LHS gives f∗(eI)(v1, . . . , vk) = eI(f(v1), . . . , f(vk)) = det(eis(f(vjt))).
Evaluating the RHS we get

f∗(ei1) ∧ . . . ∧ f∗(eik)(v1, . . . , vk) = det(f∗(eis)(vjt)) = det(eis(f(vjt))).

Thus, LHS = RHS. Since v1, . . . , vk are arbitrary this proves that
f∗(eI) = f∗(ei1) ∧ . . . ∧ f∗(eik). �.

(4) Let U ⊂ Rn be open and let V1, . . . Vn be smooth vector fields on U
such that for any x ∈ U , V1(x), . . . Vn(x) is a basis of Rn.

Let w1, . . . wn be the dual collection of 1 forms, i.e. for any x ∈ U
w1(x), . . . wn(x) is the unique n-tuple of elements of (Rn)∗ satisfying
wi(x)(Vj(x)) = δij .

Prove that all wi are smooth.

Solution

Let e1, . . . , en be the standard basis of Rn. A 1-form α on U can
be written as α =

∑
i αi(x)dxi where αi(x) = α(x)(ei). Then α is

smooth iff αi(x) is smooth for every i.
Thus, we need to check that ωj(x)(ei) is smooth in x for every

i, j. Let A(x) = [V1(x), . . . , Vn(x)]. Then A(x) is an invertible n×n
matrix. By assumption it depends smoothly on x.

We have (V1(x), . . . , Vn(x)) = (e1, . . . , en)·A(x). Therefore, (e1, . . . , en) =
(V1(x), . . . , Vn(x)) · A−1(x). Observe that A−1(x) is also smooth in
x because by the general formula for the inverse of a matrix, A−1

has entries which are rational functions in coefficients of A.
Thus, ei =

∑
k A
−1
ki (x)Vk(x). Therefore, ωj(ei)(x) =

∑
k A
−1
ki (x)ωj(Vk)(x) =∑

k A
−1
ki (x)δjk = A−1ji (x) is smooth in x. �.


