- (1) Let $V = \mathbb{R}^4$ with the standard basis e_1, \ldots, e_4 . Let $\omega = e^{1,3,4}$. Express ω as a linear combination of $\{\phi^I\}_{I=(i_1,i_2,i_3)}$ - the canonical basis of all 3-tensors o \mathbb{R}^4 . Recall that for $I = (i_1, i_2, i_3) \phi^I = e^{i_1} \otimes e^{i_2} \otimes e^{i_3}$.
- (2) Prove that H¹_{DR}(ℝ²) = 0. *Hint:* Let ω = a(x, y)dx + b(x, y)dy be a closed 1-form on ℝ². Consider f(x, y) = ∫^x₀ a(s, 0)ds + ∫^y₀ b(x, t)dt.
 (3) A Riemannian metric on a manifold Mⁿ is a smooth section ⟨·, ·⟩ of
- (3) A Riemannian metric on a manifold M^n is a smooth section $\langle \cdot, \cdot \rangle$ of the bundle of 2-tensors on M such that for any $p \in M$, $\langle \cdot, \cdot \rangle_p \colon T_p M \times T_p M \to \mathbb{R}$ is an inner product on $T_p M$.
 - (a) Prove that any smooth manifold admits a Riemannian metric.
 - (b) Two vector bundles $E_1 \xrightarrow{\pi_1} M$, $E_2 \xrightarrow{\pi_2} M$ are called *isomorphic* if there exists a diffeomorphism $F: E_1 \to E_2$ such that the following diagram commutes

and $F\colon \pi_1^{-1}(x)\to \pi_2^{-1}(x)$ is a linear isomorphism for every $x\in M.$

Prove that for any smooth manifold M it holds that TM is isomorphic to T^*M .

Hint: use part a).