1. MAYER-VIETORIS SEQUENCE

Definition 1.0.1. A cochain complex K is a sequence of homomorphisms of abelian groups $\dots \xrightarrow{d_{i-1}} K^i \xrightarrow{d_i} K^{i+1} \xrightarrow{d_{i+1}} \dots$ satisfying the condition $d_{i+1} \circ d_i = 0$ for every *i* which we will abbreviate as $d^2 = d \circ d = 0$.

Given a cochain complex we can compute its cohomology groups

$$H^i(K) :\stackrel{def}{=} \ker d_i / \operatorname{Im} d_{i-1}.$$

Definition 1.0.2. Let K, L be two cochain complexes. A morphism $f: K \to L$ is a sequence of homomorphisms $f_i: K^i \to L^i$ satisfying $d_i \circ f_i = f_{i+1} \circ d_i$. A morphism $f: K \to L$ induces homomorphisms $f_*: H^i(K) \to H^i(L)$.

Lemma 1.0.3 (Snake Lemma). Let $0 \to K \xrightarrow{f} L \xrightarrow{g} P \to 0$ be a short exact sequence of cochain complexes. It induces a long exact sequence on cohomology

$$\ldots \to H^i(K) \xrightarrow{f_*} H^i(L) \xrightarrow{g_*} H^i(P) \xrightarrow{\delta} H^{i+1}(K) \to .$$

Theorem 1.0.4 (Mayer-Vietoris sequence). Let M^n be a manifold and let $U, V \subset M$ be open subsets. Then there is a long exact sequence $\ldots \rightarrow H^i(M) \rightarrow H^i(U) \oplus H^i(V) \rightarrow H^i(U \cap V) \rightarrow H^{i+1}(M) \rightarrow \ldots$ where we put $H^i(X) = 0$ for any X and any i < 0.

Proof. Let $K = \Omega^*(M), L = \Omega^*(U) \oplus \Omega^*(V), P = \Omega^*(U \cap V)$ and consider the maps $f: K \to L, g: L \to P$ given by $f(\omega) = (\omega|_U, \omega|_V), g(\omega, \eta) = \omega|_{U \cap V} - \eta|_{U \cap V}$. Then $0 \to K \xrightarrow{f} L \xrightarrow{g} P \to 0$ is a short exact sequence of cochain complexes.

Exactness at K and L is straightforward. Let us verify that the sequence is exact at P, i.e. that g is onto. Using partition of unity of can construct nonnegative functions φ, ψ on M such that $\varphi + \psi \equiv 1$ and $\operatorname{supp} \varphi \subset U$, $\operatorname{supp} \psi \subset V$. let $\alpha \in \Omega^*(U \cap V)$. Since $\operatorname{supp}(\varphi \cdot \alpha) \subset U$ we can extend $\varphi \cdot \alpha$ by 0 to a smooth form η on V. Likewise, we can extend $\psi \cdot \alpha$ to ω on U. Then by construction $g(\omega, -\eta) = \alpha$. Thus, $0 \to K \to L \to P \to 0$ is exact. Applying the Snake Lemma we obtain the result. \Box

Corollary 1.0.5. For $n \ge 1$ we have

$$H^{i}(\mathbb{S}^{n}) \cong \begin{cases} \mathbb{R} & \text{if } i = 0, n \\ 0 & \text{if } i \neq 0, n \end{cases}$$

Proof. The case of n = 1 was proved earlier. The general case follows by induction using Mayer-Vietoris with $M = \mathbb{S}^n, U = M \setminus P, V = M \setminus Q$ where P, Q are the north and the south pole respectively. \Box

2. Cohomology with compact support

Let M be a smooth manifold. Let $\Omega_c^*(M) \subset \Omega^*(M)$ be the subcomplex of forms with compact support. It's obvious that if $\omega \in \Omega_c^*(M)$ then $d\omega \in \Omega_c^*(M)$ as well. Therefore we can define the cohomology of $\Omega_c^*(M)$ which we will denote by $H_c^*(M)$.

Example 2.0.1.

- If M is compact then $\Omega_c^*(M) = \Omega^*(M)$ and therefore $H_c^*(M) = H^*(M)$.
- Let M be connected and noncompact. Then $H^0(M) = 0$. Indeed. let $\omega = f$ be a closed 0-form with compact support. Since M is connected, df = 0 means that $f \equiv \text{const}$ and since f has compact support and M is noncompact this means that $f \equiv 0$.
- Let M^n be connected and oriented manifold without boundary. Then for any $\eta \in \Omega_c^{n-1}(M)$ we have that $\int_M d\eta$ is defined and by Stokes's formula $\int_M d\eta = 0$. This means that the map $\omega \mapsto \int_M \omega$ induces a well-defined homomorphism $\int : H_c^n(M) \to \mathbb{R}$. It's obvious that this map is onto.
- Let $M = \mathbb{R}$. By above $H_c^0(\mathbb{R}) = 0$. By degree reasons $H_c^i(\mathbb{R}) = 0$ for i > 1. We claim that $H_c^1(\mathbb{R}) \cong \mathbb{R}$. By above it's enough to show that the map $\int : H_c^n(M) \to \mathbb{R}$ is injective. Let $\omega \in \Omega_c^1(\mathbb{R})$ be such that $\int_{\mathbb{R}} \omega = 0$. we need to show that $\omega = df$ for some compactly supported f. We have $\omega = \varphi(t)dt$ for some $\varphi \in C_c^\infty(\mathbb{R})$ such that $\int_{-\infty}^{\infty} \varphi(t)dt = 0$. Define $f(x) = \int_{-\infty}^x \varphi(t)dt$. Then $df = \varphi(t)dt$ and since $\int \varphi = 0$ it follows that f has compact support.

Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be a bump function with compact support such that $\int_{\mathbb{R}} \varphi = 1$. Let $e = \varphi(t)dt$ be a generator of $H^1_c(\mathbb{R})$. Consider the following maps

 $e_*\colon \Omega^*_c(\mathbb{R}^n) \to \Omega^{*+1}_c(\mathbb{R}^n \times \mathbb{R})$ given by $\omega \mapsto \omega \wedge e$

$$\pi_*\colon \Omega_c^{*+1}(\mathbb{R}^n \times \mathbb{R}) \to \Omega_c^*(\mathbb{R}^n)$$

given by

$$\omega = \sum_{|I|=*+1} \omega_I(x,t) dx^I + \sum_{|J|=*} \omega_J(x,t) dx^J \wedge dt \mapsto \sum_{|J|=*} (\int_{-\infty}^{+\infty} \omega_J(x,t) dt) dx^J$$

One can check that $d \circ \pi_* = \pi_* \circ d$ and $d \circ \epsilon_* = e_* \circ d$ (Exercise: verify this!). Thus π_* and e_* induce maps on compactly supported cohomology $\pi_* \colon H_c^{*+1}(\mathbb{R}^n \times \mathbb{R}) \to H_c^*(\mathbb{R}^n)$ and $e_* \colon H_c^*(\mathbb{R}^n) \to H_c^{*+1}(\mathbb{R}^n \times \mathbb{R})$.

It's easy to see that $\pi_* \circ e_*(\omega) = \omega$ for any $\omega \in \Omega^*_c(\mathbb{R}^n)$. Therefore $\pi_* \circ e_* = \mathrm{id}$ on $H^*_c(\mathbb{R}^n)$.

Lemma 2.0.2 (Poincare lemma with compact support).

$$e_* \circ \pi_* = \mathrm{id} \ on \ H_c^{*+1}(\mathbb{R}^n \times \mathbb{R})$$

and hence π_* and e_* are inverse isomorphisms.

 $\mathbf{2}$

Proof. Let $A(t) = \int_{-\infty}^{t} \varphi(s) ds$. Define a "homotopy operator" $K \colon \Omega_c^{*+1}(\mathbb{R}^n \times \mathbb{R}) \to \Omega_c^*(\mathbb{R}^n \times \mathbb{R})$ by the formula

$$\omega = \sum_{|I|=*+1} \omega_I(x,t) dx^I + \sum_{|J|=*} \omega_J(x,t) dx^J \wedge dt \stackrel{K}{\mapsto}$$
$$\sum_{|J|=*} \left[(\int_{-\infty}^t \omega_J(x,s) ds) dx^J - A(t) (\int_{-\infty}^{+\infty} \omega_J(x,s) ds) dx^J \right]$$

Claim: For any $\omega \in \Omega_c^{k+1}(\mathbb{R}^n \times \mathbb{R})$ it holds

$$e_* \circ \pi_*(\omega) - \omega = (-1)^k (dK - Kd)\omega$$

The proof is a direct calculation. Once this formula is established it immediately follows that if $d\omega = 0$ then $e_* \circ \pi_*(\omega) - \omega$ is exact which proves the Lemma.

By induction on n the Lemma immediately gives

Corollary 2.0.3.

$$H_c^*(\mathbb{R}^n) \cong \begin{cases} \mathbb{R} & \text{if } * = n \\ 0 & \text{if } * \neq n \end{cases}$$

We already know that the map $\int : H_c^n(\mathbb{R}^n) \to \mathbb{R}$ is onto. Since by the above corollary the domain is 1-dimensional this implies

Corollary 2.0.4. The map $\int : H_c^n(\mathbb{R}^n) \to \mathbb{R}$ is an isomorphism. In particular $w_1, w_2 \in \Omega_c^n(\mathbb{R}^n)$ are cohomologous if and only if $\int_{\mathbb{R}^n} \omega_1 = \int_{\mathbb{R}^n} \omega_2$.

Theorem 2.0.5. Let M^n be a connected oriented manifold without boundary. Then the map $\int : H^n_c(M) \to \mathbb{R}$ is an isomorphism.

Proof. We can cover M by a countable collection of positive charts $x_i: U_i \to \mathbb{R}^n$. Let $\omega \in \Omega_c^n(M)$ is such that $\int_M \omega = 0$. We need to show that $\omega = d\eta$ for some $\eta \in \Omega_c^{n-1}(M)$. Since $\operatorname{supp}(\omega)$ is compact it's contained in the union of finitely many U_i s. Since M is connected by adding a few more U_i 's and rearranging the terms we can assume that $\operatorname{supp} \omega \subset \bigcup_{i=1}^N U_i$ and that $M_k = \bigcup_{i=1}^k U_i$ is connected for any $i \leq N$.

We claim that $H_c^n(M_k) \cong \mathbb{R}$ for any $k \leq N$. We proceed by induction in k. For k = 1 the claim is true by Corollary 2.0.4.

Suppose the claim has been established for k. We need to verify that it holds for k+1. Let $\eta \in \Omega_c^n(M_{k+1})$ such that $\int_M \eta = 0$. It's enough to show that $\eta = d\beta$ for some $\beta \in \Omega_c^{n-1}(M_{k+1})$. Using partition of unity we can construct nonnegative smooth functions φ, ψ on M_{k+1} such that $\varphi + \psi \equiv 1$, supp $\varphi \subset M_k$ and supp $\psi \subset U_{k+1} \cong \mathbb{R}^n$. Let $\alpha \in \Omega_c^n(M_k \cap U_{k+1})$ be an axillary form with $\int_M \alpha = 1$. Let $\eta_1 = \varphi \eta, \eta_2 = \psi \eta$ and let $c = \int_M \eta_1$. Then $\eta = \eta_1 + \eta_2$, $0 = \int_M \eta = \int_M \eta_1 + \int_M \eta_2$ and hence $\int_M \eta_2 = -c$.

Consider the form $\eta_1 - c\alpha$. It has support contained in M_k and $\int_M (\eta_1 - c\alpha) = c - c = 0$. hence by the induction assumption, $\eta_1 = d\beta_1$ for some $\beta_1 \in \Omega_c^{n-1}(M_k)$. Similarly, the form $\eta_2 + c\alpha$ has support in U_{k+1} and $\int_M \eta_2 + c\alpha = -c + c = 0$ also. Therefore, $\eta_2 = d\beta_2$ for some $\beta_2 \in \Omega_c^{n-1}(U_{k+1})$. Thus, $\eta = \eta_1 + \eta_2 = d(\beta_1 + \beta_2)$. This finishes the proof of the induction step and hence of Theorem 2.0.5.

Since for compact manifolds $H^n = H^n_c$, the above theorem immediately yields

Corollary 2.0.6. Let M^n be a closed connected orientable manifold. Then $H^n(M) \cong \mathbb{R}$.

3. Degree theory

Definition 3.0.1. Let M^n, N^n be closed connected oriented manifolds. Let $f: M \to N$ be a smooth map. Let $c \in N$ be a regular value of f. By the Inverse Function Theorem $f^{-1}(c)$ is a compact submanifold of Mof dimension 0, i.e. it's a finite set of points. Let $f^{-1}(c) = \{p_1, \ldots, p_k\}$. Let $\operatorname{sign}(p_i) = +1$ or -1 depending on whether or not df_{p_i} is orientation preserving. Define the degree of f by the formula

$$\deg f = \sum_{i} \operatorname{sign}(p_i)$$

Theorem 3.0.2. Degree is well defined, i.e. it does not depend on the choice of a regular value c. Moreover, for any $\omega \in \Omega^n(N)$ it holds that

(3.0.1)
$$\int_M f^* \omega = \deg f \cdot \int_N \omega$$

Proof. It's obviously sufficient to prove formula (3.0.1) as it implies that degree of f is invariantly defined. By the Inverse Function Theorem we can find open sets U_i containing p_i and and open set U containing p such that U is diffeomorphic to \mathbb{R}^n and $f|_{U_i}: U_i \to U$ is a diffeomorphism for every $i = 1, \ldots, k$.

Let $\alpha \in \Omega_c^n(U)$ be such that $\int_N \alpha = 1$. Let $c = \int_N \omega$. Since $H^n(N) \cong \mathbb{R}$ we have that $[\omega] = [c\alpha] \in H^n(N)$.

We have $\int_M f^*(\alpha) = \sum_i \int_{U_i} f^*(\alpha) = \sum_i \operatorname{sign}(p_i) \int_U \alpha = (\deg f) \int_U \alpha = \deg f$. Since $[\omega] = [c\alpha]$ we have that $[f^*(\omega)] = [f^*(c\alpha)] = [cf^*(\alpha)]$. Therefore,

$$\int_{M} f^{*}(\omega) = \int_{M} cf^{*}(\alpha) = c \int_{M} f^{*}(\alpha) = c \cdot \deg f = \deg f \cdot \int_{N} \omega$$

Corollary 3.0.3 (Homotopy invariance of degree). Let $f, g: M \to N$ be homotopic. Then

$$\deg f = \deg g$$

Example 3.0.4. Let $A: \mathbb{S}^n \to \mathbb{S}^n$ be the antipodal map A(x) = -x. Then deg $A = (-1)^{n+1}$.

Example 3.0.5. Let $f: \mathbb{S}^1 \to \mathbb{S}^1$ be given by $f(z) = z^n$. Then deg f = n.

Corollary 3.0.6. Suppose $f: M \to N$ has deg $f \neq 0$. Then f is onto.

Proof. Suppose f is not onto. Let $c \in N$ be a point which is not in the image of f. Then c is a regular value of f. using ing for computing deg f gives that deg f = 0.

Theorem 3.0.7 (Fundamental Theorem of Algebra). Let $n \ge 1$ and let $p(z) = a_n z^n + \ldots a_1 z + a_0$ be a complex polynomial of degree n with $a_i \in C$ and $a_n \ne 0$.

Then there exists $z \in \mathbb{C}$ such that p(z) = 0.

Proof. Consider the following map $f_p: \mathbb{CP}^1 \to \mathbb{CP}^1$

$$f_p([z_0:z_1]) = [a_n z_0^n + a_{n-1} z_0^{n-1} z_1 + \ldots + a_1 z_0 z_1^{n-1} + a_0 z_1^n : z_1^n]$$

This map is easily seen to be smooth. Moreover, when written with respect to the standard parameterization $\varphi(u) = [u:1]$ and the inverse coordinate chart $x([z_0:z_1]) = \frac{z_0}{z_1}$ defined on the open set $U = \{[z_0:z_1]: z_1 \neq 0\}$ we have that $x \circ f_p \circ \varphi = p$. Also, obviously, $f_p([1:0]) = [a_n:0] = [1:0]$.

Let $p_t(z) = a_n z^n + t a_{n-1} z^{n-1} + \dots t a_1 z + t a_0$.

Then $p_0(z) = a_n z^n$ and $p_1 = p$. The map $F(t, [z_0 : z_1]) = f_{p_t}([z_0 : z_1])$ provides a homotopy between f_p and f_{p_0} . Since $\mathbb{C}\setminus\{0\}$ is connected, it's easy to see that $f_{a_n z^n}$ is homotopic to f_{z^n} . Therefore, deg $f_p = \deg f_{a_n z^n} =$ f_{z^n} . By taking c = 1 and looking at the roots of $z^n = 1$ it's easy to compute that deg $f_{z^n} = n$. Thus, deg $f_p = n \neq 0$. Therefore, by corollary 3.0.6, f_p is onto. In particular, there exists $[z_0 : z_1]$ such that $f_p([z_0 : z_1]) = [0 : 1]$. By above, $z_1 \neq 0$ and therefore $p(\frac{z_0}{z_1}) = 0$.

Lemma 3.0.8. Let $f,g: X \to S^n$ satisfy $f(x) \neq -g(x)$ for any $x \in X$. Then $f \sim g$.

Proof. Let $F: X \times [0,1] \to S^n$ be given by $F(x,t) = \frac{tf(x) + (1-t)g(x)}{|tf(x) + (1-t)g(x)|}$. Since $f(x) \neq -g(x)$ the denominator is never zero. Hence F is a homotopy from f to g.

Theorem 3.0.9 (Hairy Ball Theorem). There is no continuous nowhere vanishing vector field V on \mathbb{S}^{2n} for any $n \ge 1$.

Proof. Suppose such V exists. By changing V to $\frac{V}{|V|}$ we can assume that |V(x)| = 1 for any $x \in \mathbb{S}^{2n}$. Thus V can be viewed as a map $V \colon \mathbb{S}^{2n} \to \mathbb{S}^{2n}$. Since $V(x) \in T_x \mathbb{S}^{2n}$ we have that $V(x) \perp x$ for any x. Applying the previous lemma to V and the identity map of \mathbb{S}^{2n} we conclude that $V \sim \mathrm{id}_{\mathbb{S}^{2n}}$. Similarly, $V \sim A$ where $A \colon \mathbb{S}^{2n} \to \mathbb{S}^{2n}$ is the antipodal map A(x) = -x. Thus $\mathrm{id}_{\mathbb{S}^{2n}} \sim V \sim A$. This is a contradiction since $\mathrm{degid}_{\mathbb{S}^{2n}} = 1$ and $\mathrm{deg} A = -1$.

4. Euler Characteristic

Let M be a closed oriented manifold. Let V be a vector field on M transverse to the zero section. Let p be a zero of V. Define $\operatorname{sign}(p)$ as follows. let x be a positive local coordinates near p. Then V can be written as $V = \sum_i V_i(x) \frac{\partial}{\partial x_i}$. Transversality means that $\operatorname{det}\left(\frac{\partial V_i}{\partial x_j}(p)\right) \neq 0$. Define $\operatorname{sign}(p) := \operatorname{sign}(\operatorname{det}\left(\frac{\partial V_i}{\partial x_j}(p)\right))$. It's easy to see that this definition does not depend on the choice of the positive chart x.

Definition 4.0.1. Let M be a closed oriented manifold.

Let V be a smooth vector field on M such that $V \pitchfork 0(M)$. Let p_1, \ldots, p_k be the zeros of V. Set

$$\chi_V(M) = \sum_i \operatorname{sign}(p_i)$$

Theorem 4.0.2. Then $\chi_V(M)$ does not depend on the choice of the transverse vector field V.

Sketch of the Proof. Let V_0, V_1 be two different smooth vector fields on M which are transverse to the zero section. We need to show that $\chi_{V_0}(M) = \chi_{V_1}(M)$.

Let $F: M \times [0,1] \to TM$ be the homotopy between V_0 and V_1 given by $F(p,t) = (1-t)V_1(p) + tV_2(p)$. Then F is a smooth map and it's transverse to 0(M) on its boundary $\partial(M \times [0,1]) = M \times \{0\} \cup M \times \{1\}$. By the Transversality Aproximation Theorem F is homotopic to a map $\tilde{F}: M \times [0,1] \to TM$ such that $\tilde{F} \pitchfork 0(M)$ and $\tilde{F}|_{\partial(M \times [0,1])} = F|_{\partial(M \times [0,1])}$, i.e. $\tilde{F}(p,0) = V_0(p)$ and $\tilde{F}(p,1) = V_1(p)$ for any $p \in M$.

Then the set $S = \tilde{F}^{-1}(0(M)) \subset M \times [0,1]$ is a compact submanifold with boundary of dimension 1 and $\partial S \subset \partial (M \times [0,1]) = M \times \{0\} \cup M \times \{1\}$. By construction, $\partial S \cap M \times \{0\} = V_0^{-1}(0)$ and $\partial S \cap M \times \{1\} = V_1^{-1}(0)$.

Observe that S inherits a natural orientation defined as follows. Let $p \in S, v \in T_pS$. We have that F(p) = (q, 0) for some $q \in M$. Let $x: U \to \mathbb{R}^n$ be positive local coordinates near q and let (x, y) be corresponding standard local coordinates on TU. Then F can be written as $F(z) = \sum_i y_i(z) \frac{\partial}{\partial x_i}|_{x(z)}$. Let $G: TU \to \mathbb{R}^n$ be given by G(x, y) = y and let $Y = G \circ F$. Note that G(p) = 0. The condition that F is transverse to the zero section at p is equivalent to saying that $dY_p: T_p(M \times [0,1]) \to \mathbb{R}^n$ is onto. Let $v_2, \ldots, v_n \in T_p(M \times [0,1])$ be such that $dY_p(v_2), \ldots, dY_p(v_n)$ is a positive basis of \mathbb{R}^n .

For $v \in T_pS$ we say that it's positively oriented if V, v_2, \ldots, v_n is a positive basis of $T_p(M \times [0, 1])$. It's easy to see that this orientation does not depend on the choices involved.

Since S is compact and 1-dimensional it's diffeomorphic to a disjoint union of finitely many circles and closed intervals.

One can check that for any zero of $(p_i, 1)$ of V_1 it holds that $sign(p_i)$ is equal to the induced orientation on $(p_i, 1)$ when viewed as a point on the

boundary of S. Likewise, for any zero $(q_i, 1)$ of V_q it holds that $sign(q_i)$ is equal to the induced orientation on $(q_i, 1)$ when it is viewed as a point on the boundary of S.

Thus the arcs in S with both endpoints on $M \times \{1\}$ contribute one +1 and one -1 to $\chi_{V_1}(M)$ and the same works for the arcs in S with both boundary points on $M \times \{0\}$. Thus, the only components of S that nontrivially contribute to $\chi_{V_0}(M)$ and $\chi_{V_1}(M)$ are those with one endpoints on $M \times \{1\}$ and another on $M \times \{0\}$. This yields that $\chi_{V_0}(M) = \chi_{V_1}(M)$. \Box

In view of Theorem 4.0.2 We can define the Euler characteristic of ${\cal M}$ to be

$$\chi(M) := \chi_V(M)$$

where V is any vector field on M transverse to the zero section.

Note that if M admits a nowhere vanishing vector field on V. Then $\chi(M) = \chi_V(M) = 0$.

Example 4.0.3. Let $M = \mathbb{S}^2 \subset \mathbb{R}^3$ be the unite sphere centered at 0 and let V(x, y, z) = (-y, x, 0). Then $V \Leftrightarrow 0(M)$ with the zeros at $(0, 0, \pm 1)$. One can check that both zeros have signs=+1 and therefore $\chi(\mathbb{S}^2) = 2$. This gives a different proof of the Hairy Ball Theorem.