1. MAYER-VIETORIS SEQUENCE

Definition 1.0.1. A cochain compler Kis a sequence of homomorphisms

di— ; i ; d; P L.
of abelian groups ... — K’ BN €A i S satisfying the condition
diy+1 od; =0 for every ¢ which we will abbreviate as d?=dod=0.

Given a cochain complex we can compute its cohomology groups
; d
Hi(K) " kerd;/Tmd;_;.

Definition 1.0.2. Let K, L be two cochain complexes. A morphism f: K —
L is a sequence of homomorphisms f;: K* — L* satisfying diof; = le od;.
A morphism f: K — L induces homomorphisms f,: H'(K) — H*(L).

Lemma 1.0.3 (Snake Lemma). Let 0 — K Iy L 25 P50 be a short
exact sequence of cochain complexes. It induces a long exact sequence on
cohomology

s HY(K) I 5y 2 5P L HIPY(EK) ..

Theorem 1.0.4 (Mayer-Vietoris sequence). Let M™ be a manifold and let
UV C M be open subsets. Then there is a long eract sequence ... —
H{(M) - H(U)® H(V) - H(UNV) = HT (M) — ... where we put
HY(X) =0 for any X and any i < 0.

Proof. Let K = Q*(M),L =Q*(U) & Q*(V),P =Q*(UNV) and consider
the maps f: K — L,g: L — P given by f(w) = (wlv,w|v), g(w,n) =

w|lvnv — nlunv. Then 0 — K i> L %5 P — 0 is a short exact sequence
of cochain complexes.

Exactness at K and L is straightforward. Let us verify that the sequence
is exact at P, i.e. that g is onto. Using partition of unity of can construct
nonnegative functions ¢,1 on M such that ¢ + ¢ = 1 and suppy C
U,suppy C V. let « € Q*(UNV). Since supp(¢ - @) C U we can extend
@ -« by 0 to a smooth form 1 on V. Likewise, we can extend 9 - o to w
on U. Then by construction g(w, —n) = «. Thus, 0 > K - L —- P — 0 is
exact. Applying the Snake Lemma we obtain the result. O

Corollary 1.0.5. For n > 1 we have

w0

0ifi#0,n
Proof. The case of n = 1 was proved earlier. The general case follows by
induction using Mayer-Vietoris with M = S",U = M\ P,V = M\Q where
P, @Q are the north and the south pole respectively. ([l

2. COHOMOLOGY WITH COMPACT SUPPORT

Let M be a smooth manifold. Let Qf(M) C Q*(M) be the subcomplex
of forms with compact support. It’s obvious that if w € Q}(M) then
1
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dw € Q5(M) as well. Therefore we can define the cohomology of Qf(M)
which we will denote by H}(M).

Example 2.0.1.

If M is compact then Q%(M) = Q*(M) and therefore H}(M) =
Let M be connected and noncompact. Then H°(M) = 0. Indeed.
let w = f be a closed 0-form with compact support. Since M is
connected, df = 0 means that f =const and since f has compact
support and M is noncompact this means that f = 0.

Let M™ be connected and oriented manifold without boundary.
Then for any n € QI (M) we have that [,,dn is defined and by
Stokes’s formula [, dn = 0. This means that the map w — [;,w
induces a well-defined homomorphism [: H(M) — R. It’s obvious
that this map is onto.

Let M = R. By above H)(R) = 0. By degree reasons H:(R) = 0
for i > 1. We claim that H!(R) & R. By above it’s enough to show
that the map [: H?(M) — R is injective. Let w € QL(R) be such
that wa = 0. we need to show that w = df for some compactly
supported f. We have w = ¢(t)dt for some ¢ € C°(R) such that
7 @(t)dt = 0. Define f(z) = [*__@(t)dt. Then df = ¢(t)dt and
since [ ¢ = 0 it follows that f has compact support.

Let o: R — R be a bump function with compact support such that
Jew =1. Let e = ¢(t)dt be a generator of H}(R). Consider the following

maps

ex: Q(R™) — QTR x R) given by w— wAe

e QETHR™ x R) — QF(R™)

given by

+o0

w= Z wr(z, t)dz! + Z wy(z, t)dz’ A dt — Z (/ wy(x, t)dt)dz”

[T|=%+1 |J|=x= | J]|=x* >

One can check that dom, = 7y 0d and doe, = e, od (Exercise: verify

this!).

Thus 7, and e, induce maps on compactly supported cohomology

me: HXPH(R™ x R) — HX(R") and e,: HX(R") — HTH(R" x R).
It’s easy to see that m, o ex(w) = w for any w € Q}(R™). Therefore
T« 0 e, =id on H}(R™).

Lemma 2.0.2 (Poincare lemma with compact support).

ex o = id on HITHR™ x R)

and hence m, and e, are inverse isomorphisms.



3

Proof. Let A(t) = ffoo ¢(s)ds. Define a "homotopy operator” K : Q1 (R"x
R) — Q*(R™ x R) by the formula

w= Z wi(z, t)dx’ + Z wy(z, t)dx? A dt s
=1 |j=
+o00

Z[(/ wJ(x,s)ds)dz‘]—A(t)(/ wy(z, s)ds)dz’]

Claim: For any w € Q¥ 1(R" x R) it holds

ex 0 my(w) —w = (—1DF(dK — Kd)w
The proof is a direct calculation. Once this formula is established it imme-
diately follows that if dw = 0 then e, o 7 (w) — w is exact which proves the
Lemma.

O
By induction on n the Lemma immediately gives

Corollary 2.0.3.
Rifx=n
0ifx#mn

We already know that the map [: H?(R") — R is onto. Since by the
above corollary the domain is 1-dimensional this implies

H(R") = {

Corollary 2.0.4. The map [: H}(R™) — R is an isomorphism. In par-
ticular wy,we € QX (R™) are cohomologous if and only if fR" w1 = fRn w9 .

Theorem 2.0.5. Let M™ be a connected oriented manifold without bound-
ary. Then the map [: H}(M) — R is an isomorphism.

Proof. We can cover M by a countable collection of positive charts z;: U; —
R"™. Let w € QF(M) is such that [,,w =0. We need to show that w = dn
for some n € Q"~1(M). Since supp(w) is compact it’s contained in the
union of finitely many U;s. Since M is connected by adding a few more
U;’s and rearranging the terms we can assume that suppw C UZ]-LUZ- and
that My = UY_,U; is connected for any i < N.

We claim that H? (M) =2 R for any k < N. We proceed by induction in
k. For k =1 the claim is true by Corollary

Suppose the claim has been established for k. We need to verify that it
holds for k+1. Let n € QI (Mj41) such that [,, 7= 0. It’s enough to show
that 7 = dB for some 8 € Q" 1(My,1). Using partition of unity we can
construct nonnegative smooth functions ¢, 1 on My such that p+¢Y =1,
suppy C My, and suppy C Uy = R™. Let a € QY ( My N Ugy1) be an
axillary form with [}, = 1. Let 1 = @n,me = ¢n and let ¢ = [, 1.

Then n =n1 + 12, O:an:an1+fM7}2 and hence angz—c.



Consider the form 7; — ca. It has support contained in M, and [ (=
ca) = ¢ —c¢ = 0. hence by the induction assumption, 171 = df; for some
By € Q2~Y(My,). Similarly, the form n2+ca has support in Uy 1 and fM o+
ca = —c+c = 0 also. Therefore, 1y = dfs for some By € Q71 (Uyy1). Thus,
n=m +ne = d(S1 + B2). This finishes the proof of the induction step and
hence of Theorem 2.0.5 O

Since for compact manifolds H" = H', the above theorem immediately
yields

Corollary 2.0.6. Let M™ be a closed connected orientable manifold. Then
H"(M) = R.

3. DEGREE THEORY

Definition 3.0.1. Let M"™, N™ be closed connected oriented manifolds.
Let f: M — N be a smooth map. Let ¢ € N be a regular value of f.
By the Inverse Function Theorem f~!(c) is a compact submanifold of M
of dimension 0, i.e. it’s a finite set of points. Let f~1(¢) = {p1,..., i}
Let sign(p;) = +1 or —1 depending on whether or not dfy, is orientation
preserving. Define the degree of f by the formula

deg f = sign(p;)

Theorem 3.0.2. Degree is well defined, i.e. it does not depend on the choice
of a regular value c. Moreover, for any w € Q"(N) it holds that

(3.0.1) /M ffw=degf- /Nw

Proof. 1t’s obviously sufficient to prove formula (3.0.1) as it implies that
degree of f is invariantly defined. By the Inverse Function Theorem we can
find open sets U; containing p; and and open set U containing p such that
U is diffeomorphic to R™ and f|y,: U; — U is a diffeomorphism for every
i=1,...,k.

Let o € Q2(U) be such that [y a=1. Let ¢ = [y w. Since H"(N) =R
we have that [w] = [ca] € H"(N).

We have [, f(a) = 3, [y, f(a) = ¥, sign(py) [y a = (deg f) fyy 0 =
deg f. Since [w] = [ca] we have that [f*(w)] = [f*(ca)] = [cf*(a)]. There-
fore,

/Mf*(w)Z/Mcf*(a)ZC/Mf*(a)Zc-degfzdegf-/Nw
O

Corollary 3.0.3 (Homotopy invariance of degree). Let f,g: M — N be
homotopic. Then

deg f = degyg
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Example 3.0.4. Let A: S” — S™ be the antipodal map A(x) = —z. Then
deg A = (—1)"*1.

Example 3.0.5. Let f: S! — S! be given by f(z) = 2". Then deg f = n.
Corollary 3.0.6. Supose f: M — N has deg f #0. Then f is onto.

Proof. Suppose f is not onto. Let ¢ € N be a point which is not in the
image of f. Then ¢ is a regular value of f. using ing for computing deg f
gives that deg f = 0. O

Theorem 3.0.7 (Fundamental Theorem of Algebra). Let n > 1 and let
p(2) = apz" +...a12 +ag be a complex polynomial of degree n with a; € C
and a, # 0.

Then there exists z € C such that p(z) = 0.

Proof. Consider the following map f,: CP! — CP!

Ip([20 = 21]) = [anzg + an_lzg_lzl 4+ .+ alzoz?_l + apzt : 27

This map is easily seen to be smooth. Moreover, when written with respect
to the standard parameterization @(u) = [u : 1] and the inverse coordinate
chart @([zo : 21]) = £ defined on the open set U = {[2 : 21] : z1 # 0} we
have that x o f, o ¢ = p. Also, obviously, fy([1:0]) = [a,: 0] =[1:0].

Let p(2) = anz™ + tan_12" "1 + .. . ta1z + tag.

Then po(z) = anz™ and p1 = p. The map F(t, [z : 21]) = fp,([20 : 21])
provides a homotopy between f,, and f,,. Since C\{0} is connected, it’s
easy to see that f,, .» is homotopic to f.n. Therefore, deg f, = deg f,,.n» =
fzn. By taking ¢ = 1 and looking at the roots of 2" =1 it’s easy to compute
that deg f.n = n. Thus, deg f, = n # 0. Therefore, by corollary Ip
is onto. In particular, there exists [zp : 1] such that f,([z0 : z1]) = [0 : 1].
By above, z; # 0 and therefore p(i—‘l)) =0. O

Lemma 3.0.8. Let f,g: X — S™ satisfy f(x) # —g(x) for any x € X.
Then f~g.

Proof. Let F': X x[0,1] — S™ be given by F(x,t) = %. Since
f(x) # —g(x) the denominator is never zero. Hence F' is a homotopy from
ftog. ([

Theorem 3.0.9 (Hairy Ball Theorem). There is no continuous nowhere
vanishing vector field V. on S** for any n > 1.

Proof. Suppose such V' exists. By changing V' to \“;7\

|V(z)] =1 for any z € S*®. Thus V can be viewed as a map V: S§?* —
S?*. Since V(x) € T,S*™ we have that V(z) L x for any z. Applying
the previous lemma to V and the identity map of S?® we conclude that
V ~ idgen. Similarly, V ~ A where A: §?" — S?" is the antipodal map
A(x) = —z. Thus idgzn ~ V ~ A. This is a contradiction since degidgen =
1 and deg A = —1. O

we can assume that



4. EULER CHARACTERISTIC

Let M be a closed oriented manifold. Let V be a vector field on M
transverse to the zero section. Let p be a zero of V. Define sign(p) as
follows. let x be a positive local coordinates near p. Then V can be
written as V =), Vz(x)a%l Transversality means that det (g}g (p)) # 0.

Define sign(p) := sign(det (g;/; (p))) It’s easy to see that this definition

does not depend on the choice of the positive chart x.

Definition 4.0.1. Let M be a closed oriented manifold.
Let V' be a smooth vector field on M such that V- 0(M). Let p1,...,pk
be the zeros of V. Set

xv(M) = Z sign(p;)

Theorem 4.0.2. Then xy (M) does not depend on the choice of the trans-
verse vector field V .

Sketch of the Proof. Let Vy, V1 be two different smooth vector fields on M
which are transverse to the zero section. We need to show that xy, (M) =
Xvi (M) :

Let F': M x [0,1] — T'M be the homotopy between V{ and V; given
by F(p,t) = (1 — t)Vi(p) + tVa(p). Then F is a smooth map and it’s
transverse to 0(M) on its boundary O(M x [0,1]) = M x {0} UM x {1}.
By the Transversality Aproximation Theorem F' is homotopic to a map
F: M x[0,1] = TM such that F th 0(M) and F’a(Mx[O,l]) = F‘a(Mx[O,l])v
i.e. F(p,0)=Vy(p) and F(p,1) = Vi(p) for any p € M.

Then the set S = F~1(0(M)) € M x[0,1] is a compact submanifold with
boundary of dimension 1 and 95 C (M x[0,1]) = M x {0} UM x {1}. By
construction, S N M x {0} = V5 1(0) and 9SN M x {1} = V;1(0).

Observe that S inherits a natural orientation defined as follows. Let
p € S,v e T,S. We have that F(p) = (¢,0) for some ¢ € M. Let z: U —
R™ be positive local coordinates near ¢ and let (z,y) be corresponding
standard local coordinates on TU. Then F can be written as F(z) =
> yi(z)%|x(z)' Let G: TU — R™ be given by G(z,y) =y and let Y =
G o F'. Note that G(p) = 0. The condition that F' is transverse to the
zero section at p is equivalent to saying that dY),: T,(M x [0,1]) — R" is
onto. Let vy,...v, € TH(M x [0,1]) be such that dY,(v2),...,dY,(vy) is a
positive basis of R".

For v € T,,S we say that it’s positively oriented if V, va, ..., v, is a positive
basis of T),(M x[0,1]). It’s easy to see that this orientation does not depend
on the choices involved.

Since S is compact and 1-dimensional it’s diffeomorphic to a disjoint
union of finitely many circles and closed intervals.

One can check that for any zero of (p;,1) of Vi it holds that sign(p;) is
equal to the induced orientation on (p;, 1) when viewed as a point on the
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boundary of S. Likewise, for any zero (¢;,1) of V; it holds that sign(g;) is
equal to the induced orientation on (g;, 1) when it is viewed as a point on
the boundary of S.

Thus the arcs in S with both endpoints on M x{1} contribute one +1 and
one —1 to xv, (M) and the same works for the arcs in S with both boundary
points on M x {0}. Thus, the only components of S that nontrivially
contribute to xyv, (M) and xy, (M) are those with one endpoints on M x {1}
and another on M x {0}. This yields that xv, (M) = xv, (M). O

In view of Theorem [4.0.2] We can define the Euler characteristic of M to
be
X(M) := xv(M)
where V is any vector field on M transverse to the zero section.

Note that if M admits a nowhere vanishing vector field on V. Then
X(M) = xv(M) =0.

Example 4.0.3. Let M = S? C R? be the unite sphere centered at 0 and
let V(z,y,2) = (—y,2,0). Then V h 0(M) with the zeros at (0,0,+1).
One can check that both zeros have signs=+1 and therefore x(S?) = 2.
This gives a different proof of the Hairy Ball Theorem.
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