
1. Mayer-Vietoris sequence

Definition 1.0.1. A cochain complex K is a sequence of homomorphisms

of abelian groups . . .
di−1−→ Ki di−→ Ki+1 di+1−→ . . . satisfying the condition

di+1 ◦ di = 0 for every i which we will abbreviate as d2 = d ◦ d = 0.

Given a cochain complex we can compute its cohomology groups

H i(K) :
def
= ker di/ Im di−1.

Definition 1.0.2. Let K,L be two cochain complexes. A morphism f : K →
L is a sequence of homomorphisms fi : K

i → Li satisfying di◦fi = fi+1◦di .
A morphism f : K → L induces homomorphisms f∗ : H i(K)→ H i(L).

Lemma 1.0.3 (Snake Lemma). Let 0 → K
f−→ L

g−→ P → 0 be a short
exact sequence of cochain complexes. It induces a long exact sequence on
cohomology

. . .→ H i(K)
f∗−→ H i(L)

g∗−→ H i(P )
δ−→ H i+1(K)→ . . .

Theorem 1.0.4 (Mayer-Vietoris sequence). Let Mn be a manifold and let
U, V ⊂ M be open subsets. Then there is a long exact sequence . . . →
H i(M) → H i(U) ⊕H i(V ) → H i(U ∩ V ) → H i+1(M) → . . . where we put
H i(X) = 0 for any X and any i < 0.

Proof. Let K = Ω∗(M), L = Ω∗(U) ⊕ Ω∗(V ), P = Ω∗(U ∩ V ) and consider
the maps f : K → L, g : L → P given by f(ω) = (ω|U , ω|V ), g(ω, η) =

ω|U∩V − η|U∩V . Then 0 → K
f−→ L

g−→ P → 0 is a short exact sequence
of cochain complexes.

Exactness at K and L is straightforward. Let us verify that the sequence
is exact at P , i.e. that g is onto. Using partition of unity of can construct
nonnegative functions ϕ,ψ on M such that ϕ + ψ ≡ 1 and suppϕ ⊂
U, suppψ ⊂ V . let α ∈ Ω∗(U ∩ V ). Since supp(ϕ · α) ⊂ U we can extend
ϕ · α by 0 to a smooth form η on V . Likewise, we can extend ψ · α to ω
on U . Then by construction g(ω,−η) = α . Thus, 0→ K → L→ P → 0 is
exact. Applying the Snake Lemma we obtain the result. �

Corollary 1.0.5. For n > 1 we have

H i(Sn) ∼=

{
R if i = 0, n

0 if i 6= 0, n

Proof. The case of n = 1 was proved earlier. The general case follows by
induction using Mayer-Vietoris with M = Sn, U = M\P, V = M\Q where
P,Q are the north and the south pole respectively. �

2. Cohomology with compact support

Let M be a smooth manifold. Let Ω∗c(M) ⊂ Ω∗(M) be the subcomplex
of forms with compact support. It’s obvious that if ω ∈ Ω∗c(M) then

1



2

dω ∈ Ω∗c(M) as well. Therefore we can define the cohomology of Ω∗c(M)
which we will denote by H∗c (M).

Example 2.0.1.
• If M is compact then Ω∗c(M) = Ω∗(M) and therefore H∗c (M) =
H∗(M).
• Let M be connected and noncompact. Then H0(M) = 0. Indeed.

let ω = f be a closed 0-form with compact support. Since M is
connected, df = 0 means that f ≡const and since f has compact
support and M is noncompact this means that f ≡ 0.
• Let Mn be connected and oriented manifold without boundary.

Then for any η ∈ Ωn−1
c (M) we have that

∫
M dη is defined and by

Stokes’s formula
∫
M dη = 0. This means that the map ω 7→

∫
M ω

induces a well-defined homomorphism
∫

: Hn
c (M)→ R . It’s obvious

that this map is onto.
• Let M = R . By above H0

c (R) = 0. By degree reasons H i
c(R) = 0

for i > 1. We claim that H1
c (R) ∼= R . By above it’s enough to show

that the map
∫

: Hn
c (M) → R is injective. Let ω ∈ Ω1

c(R) be such
that

∫
R ω = 0. we need to show that ω = df for some compactly

supported f . We have ω = ϕ(t)dt for some ϕ ∈ C∞c (R) such that∫∞
−∞ ϕ(t)dt = 0. Define f(x) =

∫ x
−∞ ϕ(t)dt . Then df = ϕ(t)dt and

since
∫
ϕ = 0 it follows that f has compact support.

Let ϕ : R → R be a bump function with compact support such that∫
R ϕ = 1. Let e = ϕ(t)dt be a generator of H1

c (R). Consider the following
maps

e∗ : Ω∗c(Rn)→ Ω∗+1
c (Rn × R) given by ω 7→ ω ∧ e

π∗ : Ω∗+1
c (Rn × R)→ Ω∗c(Rn)

given by

ω =
∑
|I|=∗+1

ωI(x, t)dx
I +

∑
|J |=∗

ωJ(x, t)dxJ ∧ dt 7→
∑
|J |=∗

(

∫ +∞

−∞
ωJ(x, t)dt)dxJ

One can check that d ◦ π∗ = π∗ ◦ d and d ◦ ε∗ = e∗ ◦ d (Exercise: verify
this!). Thus π∗ and e∗ induce maps on compactly supported cohomology
π∗ : H∗+1

c (Rn × R)→ H∗c (Rn) and e∗ : H∗c (Rn)→ H∗+1
c (Rn × R).

It’s easy to see that π∗ ◦ e∗(ω) = ω for any ω ∈ Ω∗c(Rn). Therefore
π∗ ◦ e∗ = id on H∗c (Rn).

Lemma 2.0.2 (Poincare lemma with compact support).

e∗ ◦ π∗ = id on H∗+1
c (Rn × R)

and hence π∗ and e∗ are inverse isomorphisms.
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Proof. Let A(t) =
∫ t
−∞ ϕ(s)ds . Define a ”homotopy operator” K : Ω∗+1

c (Rn×
R)→ Ω∗c(Rn × R) by the formula

ω =
∑
|I|=∗+1

ωI(x, t)dx
I +

∑
|J |=∗

ωJ(x, t)dxJ ∧ dt K7→

∑
|J |=∗

[(

∫ t

−∞
ωJ(x, s)ds)dxJ −A(t)(

∫ +∞

−∞
ωJ(x, s)ds)dxJ ]

Claim: For any ω ∈ Ωk+1
c (Rn × R) it holds

e∗ ◦ π∗(ω)− ω = (−1)k(dK −Kd)ω

The proof is a direct calculation. Once this formula is established it imme-
diately follows that if dω = 0 then e∗ ◦ π∗(ω)− ω is exact which proves the
Lemma.

�

By induction on n the Lemma immediately gives

Corollary 2.0.3.

H∗c (Rn) ∼=

{
R if ∗ = n

0 if ∗ 6= n

We already know that the map
∫

: Hn
c (Rn) → R is onto. Since by the

above corollary the domain is 1-dimensional this implies

Corollary 2.0.4. The map
∫

: Hn
c (Rn) → R is an isomorphism. In par-

ticular w1, w2 ∈ Ωn
c (Rn) are cohomologous if and only if

∫
Rn ω1 =

∫
Rn ω2 .

Theorem 2.0.5. Let Mn be a connected oriented manifold without bound-
ary. Then the map

∫
: Hn

c (M)→ R is an isomorphism.

Proof. We can cover M by a countable collection of positive charts xi : Ui →
Rn . Let ω ∈ Ωn

c (M) is such that
∫
M ω = 0. We need to show that ω = dη

for some η ∈ Ωn−1
c (M). Since supp(ω) is compact it’s contained in the

union of finitely many Ui s. Since M is connected by adding a few more
Ui ’s and rearranging the terms we can assume that suppω ⊂ ∪Ni=1Ui and
that Mk = ∪ki=1Ui is connected for any i 6 N .

We claim that Hn
c (Mk) ∼= R for any k 6 N . We proceed by induction in

k . For k = 1 the claim is true by Corollary 2.0.4.
Suppose the claim has been established for k . We need to verify that it

holds for k+1. Let η ∈ Ωn
c (Mk+1) such that

∫
M η = 0. It’s enough to show

that η = dβ for some β ∈ Ωn−1
c (Mk+1). Using partition of unity we can

construct nonnegative smooth functions ϕ,ψ on Mk+1 such that ϕ+ψ ≡ 1,
suppϕ ⊂ Mk and suppψ ⊂ Uk+1

∼= Rn . Let α ∈ Ωn
c (Mk ∩ Uk+1) be an

axillary form with
∫
M α = 1. Let η1 = ϕη, η2 = ψη and let c =

∫
M η1 .

Then η = η1 + η2 , 0 =
∫
M η =

∫
M η1 +

∫
M η2 and hence

∫
M η2 = −c .
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Consider the form η1− cα . It has support contained in Mk and
∫
M (η1−

cα) = c − c = 0. hence by the induction assumption, η1 = dβ1 for some
β1 ∈ Ωn−1

c (Mk). Similarly, the form η2+cα has support in Uk+1 and
∫
M η2+

cα = −c+c = 0 also. Therefore, η2 = dβ2 for some β2 ∈ Ωn−1
c (Uk+1). Thus,

η = η1 + η2 = d(β1 + β2). This finishes the proof of the induction step and
hence of Theorem 2.0.5. �

Since for compact manifolds Hn = Hn
c , the above theorem immediately

yields

Corollary 2.0.6. Let Mn be a closed connected orientable manifold. Then
Hn(M) ∼= R.

3. Degree theory

Definition 3.0.1. Let Mn, Nn be closed connected oriented manifolds.
Let f : M → N be a smooth map. Let c ∈ N be a regular value of f .
By the Inverse Function Theorem f−1(c) is a compact submanifold of M
of dimension 0, i.e. it’s a finite set of points. Let f−1(c) = {p1, . . . , pk} .
Let sign(pi) = +1 or −1 depending on whether or not dfpi is orientation
preserving. Define the degree of f by the formula

deg f =
∑
i

sign(pi)

Theorem 3.0.2. Degree is well defined, i.e. it does not depend on the choice
of a regular value c. Moreover, for any ω ∈ Ωn(N) it holds that

(3.0.1)

∫
M
f∗ω = deg f ·

∫
N
ω

Proof. It’s obviously sufficient to prove formula (3.0.1) as it implies that
degree of f is invariantly defined. By the Inverse Function Theorem we can
find open sets Ui containing pi and and open set U containing p such that
U is diffeomorphic to Rn and f |Ui : Ui → U is a diffeomorphism for every
i = 1, . . . , k .

Let α ∈ Ωn
c (U) be such that

∫
N α = 1. Let c =

∫
N ω . Since Hn(N) ∼= R

we have that [ω] = [cα] ∈ Hn(N).
We have

∫
M f∗(α) =

∑
i

∫
Ui
f∗(α) =

∑
i sign(pi)

∫
U α = (deg f)

∫
U α =

deg f . Since [ω] = [cα] we have that [f∗(ω)] = [f∗(cα)] = [cf∗(α)]. There-
fore, ∫

M
f∗(ω) =

∫
M
cf∗(α) = c

∫
M
f∗(α) = c · deg f = deg f ·

∫
N
ω

�

Corollary 3.0.3 (Homotopy invariance of degree). Let f, g : M → N be
homotopic. Then

deg f = deg g
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Example 3.0.4. Let A : Sn → Sn be the antipodal map A(x) = −x . Then
degA = (−1)n+1 .

Example 3.0.5. Let f : S1 → S1 be given by f(z) = zn . Then deg f = n .

Corollary 3.0.6. Supose f : M → N has deg f 6= 0. Then f is onto.

Proof. Suppose f is not onto. Let c ∈ N be a point which is not in the
image of f . Then c is a regular value of f . using ing for computing deg f
gives that deg f = 0. �

Theorem 3.0.7 (Fundamental Theorem of Algebra). Let n > 1 and let
p(z) = anz

n + . . . a1z+ a0 be a complex polynomial of degree n with ai ∈ C
and an 6= 0.

Then there exists z ∈ C such that p(z) = 0.

Proof. Consider the following map fp : CP1 → CP1

fp([z0 : z1]) = [anz
n
0 + an−1z

n−1
0 z1 + . . .+ a1z0z

n−1
1 + a0z

n
1 : zn1 ]

This map is easily seen to be smooth. Moreover, when written with respect
to the standard parameterization ϕ(u) = [u : 1] and the inverse coordinate
chart x([z0 : z1]) = z0

z1
defined on the open set U = {[z0 : z1] : z1 6= 0} we

have that x ◦ fp ◦ ϕ = p . Also, obviously, fp([1 : 0]) = [an : 0] = [1 : 0].
Let pt(z) = anz

n + tan−1z
n−1 + . . . ta1z + ta0 .

Then p0(z) = anz
n and p1 = p . The map F (t, [z0 : z1]) = fpt([z0 : z1])

provides a homotopy between fp and fp0 . Since C\{0} is connected, it’s
easy to see that fanzn is homotopic to fzn . Therefore, deg fp = deg fanzn =
fzn . By taking c = 1 and looking at the roots of zn = 1 it’s easy to compute
that deg fzn = n . Thus, deg fp = n 6= 0. Therefore, by corollary 3.0.6, fp
is onto. In particular, there exists [z0 : z1] such that fp([z0 : z1]) = [0 : 1].
By above, z1 6= 0 and therefore p( z0z1 ) = 0. �

Lemma 3.0.8. Let f, g : X → Sn satisfy f(x) 6= −g(x) for any x ∈ X .
Then f ∼ g .

Proof. Let F : X × [0, 1]→ Sn be given by F (x, t) = tf(x)+(1−t)g(x)
|tf(x)+(1−t)g(x)| . Since

f(x) 6= −g(x) the denominator is never zero. Hence F is a homotopy from
f to g . �

Theorem 3.0.9 (Hairy Ball Theorem). There is no continuous nowhere
vanishing vector field V on S2n for any n > 1.

Proof. Suppose such V exists. By changing V to V
|V | we can assume that

|V (x)| = 1 for any x ∈ S2n . Thus V can be viewed as a map V : S2n →
S2n . Since V (x) ∈ TxS2n we have that V (x) ⊥ x for any x . Applying
the previous lemma to V and the identity map of S2n we conclude that
V ∼ idS2n . Similarly, V ∼ A where A : S2n → S2n is the antipodal map
A(x) = −x . Thus idS2n ∼ V ∼ A . This is a contradiction since deg idS2n =
1 and degA = −1. �
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4. Euler Characteristic

Let M be a closed oriented manifold. Let V be a vector field on M
transverse to the zero section. Let p be a zero of V . Define sign(p) as
follows. let x be a positive local coordinates near p . Then V can be

written as V =
∑

i Vi(x) ∂
∂xi

. Transversality means that det
(
∂Vi
∂xj

(p)
)
6= 0.

Define sign(p) := sign(det
(
∂Vi
∂xj

(p)
)

). It’s easy to see that this definition

does not depend on the choice of the positive chart x .

Definition 4.0.1. Let M be a closed oriented manifold.
Let V be a smooth vector field on M such that V t 0(M). Let p1, . . . , pk

be the zeros of V . Set

χV (M) =
∑
i

sign(pi)

Theorem 4.0.2. Then χV (M) does not depend on the choice of the trans-
verse vector field V .

Sketch of the Proof. Let V0, V1 be two different smooth vector fields on M
which are transverse to the zero section. We need to show that χV0(M) =
χV1(M).

Let F : M × [0, 1] → TM be the homotopy between V0 and V1 given
by F (p, t) = (1 − t)V1(p) + tV2(p). Then F is a smooth map and it’s
transverse to 0(M) on its boundary ∂(M × [0, 1]) = M × {0} ∪M × {1} .
By the Transversality Aproximation Theorem F is homotopic to a map
F̃ : M × [0, 1]→ TM such that F̃ t 0(M) and F̃ |∂(M×[0,1]) = F |∂(M×[0,1]) ,

i.e. F̃ (p, 0) = V0(p) and F̃ (p, 1) = V1(p) for any p ∈M .

Then the set S = F̃−1(0(M)) ⊂M× [0, 1] is a compact submanifold with
boundary of dimension 1 and ∂S ⊂ ∂(M × [0, 1]) = M ×{0}∪M ×{1} . By
construction, ∂S ∩M × {0} = V −10 (0) and ∂S ∩M × {1} = V −11 (0).

Observe that S inherits a natural orientation defined as follows. Let
p ∈ S, v ∈ TpS . We have that F (p) = (q, 0) for some q ∈ M . Let x : U →
Rn be positive local coordinates near q and let (x, y) be corresponding
standard local coordinates on TU . Then F can be written as F (z) =∑

i yi(z)
∂
∂xi
|x(z) . Let G : TU → Rn be given by G(x, y) = y and let Y =

G ◦ F . Note that G(p) = 0. The condition that F is transverse to the
zero section at p is equivalent to saying that dYp : Tp(M × [0, 1]) → Rn is
onto. Let v2, . . . vn ∈ Tp(M × [0, 1]) be such that dYp(v2), . . . , dYp(vn) is a
positive basis of Rn .

For v ∈ TpS we say that it’s positively oriented if V, v2, . . . , vn is a positive
basis of Tp(M× [0, 1]). It’s easy to see that this orientation does not depend
on the choices involved.

Since S is compact and 1-dimensional it’s diffeomorphic to a disjoint
union of finitely many circles and closed intervals.

One can check that for any zero of (pi, 1) of V1 it holds that sign(pi) is
equal to the induced orientation on (pi, 1) when viewed as a point on the
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boundary of S . Likewise, for any zero (qi, 1) of Vq it holds that sign(qi) is
equal to the induced orientation on (qi, 1) when it is viewed as a point on
the boundary of S .

Thus the arcs in S with both endpoints on M×{1} contribute one +1 and
one −1 to χV1(M) and the same works for the arcs in S with both boundary
points on M × {0} . Thus, the only components of S that nontrivially
contribute to χV0(M) and χV1(M) are those with one endpoints on M×{1}
and another on M × {0} . This yields that χV0(M) = χV1(M). �

In view of Theorem 4.0.2 We can define the Euler characteristic of M to
be

χ(M) := χV (M)

where V is any vector field on M transverse to the zero section.
Note that if M admits a nowhere vanishing vector field on V . Then

χ(M) = χV (M) = 0.

Example 4.0.3. Let M = S2 ⊂ R3 be the unite sphere centered at 0 and
let V (x, y, z) = (−y, x, 0). Then V t 0(M) with the zeros at (0, 0,±1).
One can check that both zeros have signs=+1 and therefore χ(S2) = 2.
This gives a different proof of the Hairy Ball Theorem.
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