
1. Differential forms on smooth manifolds

Definition 1.0.1. Let Mn be a smooth manifold (possibly with boundary).
Let π : E → M be a smooth vector bundle over M . A section of E is a
map s : M → E such that π ◦ s = idM . A section s is called smooth if it’s
smooth as a map s : M → E .

Example 1.0.2. A smooth vector field on M is a smooth section of the
tangent bundle TM →M .

Definition 1.0.3. A differential k -form ω on M is a section of the bundle
π : Λk(T ∗M)→M of alternating k -tensors on M . I.e. ω is a map ω : M →
Λk(T ∗M) such that ω(p) ∈ Λk(T ∗pM) for any p ∈M .

Let U be an open subset in Mn and let x = (x1, . . . , xn) : U → V be a
local coordinate chart on M where V is an open subset in Rn (or Hn .

Then for any p ∈ U the tangent space TpM has a basis e1 = ∂
∂x1
|p, . . . , en =

∂
∂xn
|p . Therefore T ∗pM has a dual basis e1, . . . , en were ei(ej) = δij .

Let xi : U → R be the i-th coordinate map. Consider (dxi)p : TpM → R .

Then (dxi)p(
∂
∂xj
|p) = ∂xi

∂xj
|p = δij . In other words,

(dxi)p = ei i = 1, . . . , n

From now on we will use the notations (dxi)p for the elements of the dual
basis instead of ei . However, these are the same objects and this is simply
a notation change.

Similarly, instead of writing eI = ei1 ∧ . . . ∧ eik we will write dxI |p =
dxi1 |p ∧ . . . ∧ dxik |p . Thus, every k -form ω on U can be uniquely written
as

ω =
∑

I=(i1<...<ik)

ωI(x)dxI

. This gives a canonical bijection

Lemma 1.0.4. Let ω =
∑

I=(i1<...<ik)
ωI(x)dxI be a k -form on U . Then

TFAE

(1) ω is smooth as a map U → TU
(2) ωI is a smooth function on U for every I = (i1 < . . . < ik).
(3) For any smooth vector fields V1, . . . , Vk on U it holds that ω(V1(x), . . . , Vk(x))

is a smooth function on U .

We denote the set of all smooth k -form on M by Ωk(M). We’ll denote
by Ω∗(M) the collection of all forms of all degrees i.e. ∪kΩk(M).

Note that Ω0(M) = C∞(M). All pointwise operations on alternating
tensors such as addition, multiplication by a number and wedge product
make sense for forms Moreover, if ω ∈ Ωk(M) and f : M → R is smooth
then f · ω is also a smooth form.

Pullbacks make sense for forms as well.
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Given a smooth map f : M → N and ω ∈ Ωk(N) we define f∗(ω) by
f∗(ω)(p) = df∗p (ω(f(p))). I.e. for v1, . . . vk ∈ TpM we have f∗ω(p)(v1, . . . , vk) =
ω(f(p))(dfp(v1), . . . , dfp(vk)). By computing f∗(ω) in local coordinates it
follows from Lemma 1.0.4 that f∗(ω) is smooth.

Proposition 1.0.5.

a) If ω1, ω2 ∈ Ωk(M), f1, f2 : M → R are smooth then f1ω1 + f2ω2 ∈
Ωk(M) is also a smooth k -form.

b) If ω, η ∈ Ω∗(M) then ω ∧ η ∈ Ω∗(M)
c) If F : M → N is smooth then F ∗ : Ω∗(N)→ Ω∗(N) is linear. Moreover

F ∗(g) = g ◦ F for any g ∈ Ω0(N).
d) If F : M → N and G : N → P are smooth and then (G ◦F )∗ = F ∗ ◦G∗
e) If f : M → R is smooth then f∗(dt) = df - differential of f which in

local coordinates x on M can be written as
∑

i
∂f
∂xi
dxi

f) If F : M → N is smooth and ω, η ∈ Ω∗(N) then F ∗(ω ∧ η) = F ∗(ω) ∧
F ∗(η)

g) If F = (F1, . . . , Fm) : M → Rm is smooth then F ∗(
∑

I=(i1<...<i<k)
wI(y)dyI) =∑

I(ωI ◦ F )dFi1 ∧ . . . ∧ dFik
Proof. a),b),c), f) are straightforward. d) follows from the definition of
pullback and the chain rule d(g ◦ f) = dg ◦ df . e) is immediate from the
definition: for p ∈M, v ∈ Tp(M) we have f∗(dt)(v) = dt(dfp(v)) = dfp(v).

To get the coordinate expression for df recall that for any 1-form ω we
have ω =

∑
i ω( ∂

∂xi
)dxi . In case of ω = df this gives df =

∑
i df( ∂

∂xi
)dxi =∑

i
∂f
∂xi
dxi

g) follows from e), f):

F ∗(
∑

I=(i1<...<i<k)

wI(y)dyI) =
∑
I

F ∗(wI(y)dyi1∧. . .∧dyik) =
∑
I

(ωI◦F )F ∗(dyi1)∧. . .∧F ∗(dyik) =

∑
I

(ωI ◦ F )dF i1 ∧ . . . ∧ dF ik

�

Formula g) from the previous Proposition has a particularly simple form
for top dimensional forms:

Lemma 1.0.6. Let F = (F1, . . . , Fn) : U → V be smooth where U, V ⊂ Rn
are open. Let ω = u(y)dy1 ∧ . . . dyn be an n-form on V . Then

F ∗(ω) = (u(F (x))(det(
∂fi
∂xj

))dx1 ∧ . . . ∧ dxn

2. Exterior derivative

Proposition 2.0.1. Let Mn be a smooth manifold (possibly with boundary).
There exists a unique operation, called exterior derivative, d : Ω∗(M) →
Ω∗+1(M) satisfying the following conditions
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a) Let f : V → R be smooth. Then df = df , the differential of f .
b) d : Ωk(M)→ Ωk+1(M) is linear

c) d(ω ∧ η) = dω ∧ η + (−1)|ω|·|η|ω ∧ dη
d) d ◦ d = 0

Proof. U ⊂M be open and let x = (x1, . . . , xn) : U → V be a local coordi-
nate chart. Let ω|U =

∑
I ωI(x)dxI . Define dω|U by the formula

(2.0.1) dω|U =
∑
I

dωI(x) ∧ dxI

We claim that so defined d satisfies a)-d) of the Proposition. a)-c) are
straightforward. Let us verify d). For a 0-form ω = f we have df =∑

i
∂f
∂xi
dxi . Then d(df) =

∑
j

∑
i

∂2f
∂xj∂xi

dxj ∧ dxi =
∑

j<i
∂2f

∂xj∂xi
dxj ∧ dxi +

∂2f
∂xi∂xj

dxi ∧ dxj =
∑

j<i[
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj
]dxj ∧ dxi = 0.

For a general ω =
∑

I dωI(x) ∧ dxI we have dω =
∑

I dωI(x) ∧ dxI . By
c) this implies d(dω)) =

∑
I d(dωI(x) ∧ dxI) =

∑
I d(dωi) ∧ dxI + (−1)ωI ∧

d(dxI) = 0 + 0 = 0.
It’s easy to see that conditions a)-d) implies that d must satisfy (2.0.1)

in coordinates which proves uniqueness of d . Uniqueness of d also implies
that we can use (2.0.1) to define d on global forms on M . �

Lemma 2.0.2. Let F : M → N be a smooth map. Then d ◦ F = F ◦ d.
I.e. for any ω ∈ Ω∗(N) it holds

F ∗(dω) = d(F ∗(ω))

Proof. By Proposition 1.0.5 we know that if ω = dg where g : N → R is
smooth then F ∗(dg) = d(g ◦ F )).

Let y be some local coordinate son N
By linearity it’s enough to prove the lemma for ω = u(y)dyI .
We have dω = du ∧ dyI . Hence F ∗(dω) = F ∗(du ∧ dyI) = F ∗(du) ∧

F ∗(dyI) = d(u ◦ F ) ∧ dF i1 ∧ . . . ∧ dF ik .
One the other hand, F ∗(ω) = (u◦F )dF i1∧. . .∧dF ik . Then by repeatedly

applying Proposition 2.0.1c0 and using that d(dFi) = 0 we get that

dF ∗(ω) = d(u ◦ F ) ∧ dF i1 ∧ . . . ∧ dF ik
�

3. De Rham cohomology

Definition 3.0.1. A form ω ∈ Ω∗(M) is called closed if dω = 0.
A form ω ∈ Ω∗(M) is called exact if ω = dη for some η ∈ Ω∗−1(M).

Since d ◦ d = 0 it’s obvious that every exact form is closed. It’s natural
to ask to what extent the converse holds. Let Bk(M) be the set of all exact
k -forms and let Zk(M) be the set of all closed k forms. It’s obvious that
Bk(M), Zk(M) are vector spaces and by above Bk(M) ⊂ Zk(M).
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Definition 3.0.2. Let Mn be a smooth manifold, possibly with boundary.
The k -th de Rham cohomology group of M is defined to be the quotient
group

Hk
DR(M) := Zk(M)/Bk(M)

Since Bk(M) is a vector subspace of Zk(M) the quotient Hk
DR(M) is a

vector space and not just a group.

By the definition that Hk
DR(M) = 0 iff every closed k -form is exact.

Example 3.0.3. Let M = V be an open subset of R2 . Then a 1-form
ω on V has the form P (x, y)dx + Q(x, y)dy . By definition, w is exact
iff ω = df for some smooth f : V → R , i.e. if P (x, y)dx + Q(x, y)dy =
∂f
∂x (x, y)dx+ ∂f

∂y (x, y)dxy , or P (x, y) = ∂f
∂x (x, y) and Q(x, y) = ∂f

∂y (x, y).

On the other hand ω is closed iff 0 = dω = d(P (x, y)dx + Q(x, y)dy) =

(−∂P
∂y (x, y) + ∂Q

∂x (x, y))dx ∧ dy or −∂P
∂y (x, y) + ∂Q

∂x (x, y) = 0.

Thus, every closed 1-form on V is exact iff for any smooth P,Q : V → R
satisfying ∂P

∂y (x, y) = ∂Q
∂x (x, y) there exists a smooth f : V → R such that

P = ∂f
∂x and Q = ∂f

∂y (x, y).

Exercise 3.0.4. Prove that H1
DR(R2) = 0

Let f : M → N be a smooth map between manifolds. Since F ∗ commutes
with d , F ∗ sends closed forms to closed forms and exact forms to exact
forms. Therefore it induces a homomorphism F ∗ : Hk

DR(N) → Hk
DR(M)

for any k .
Since (G◦F )∗ = F ∗ ◦G∗ and Id∗M = Id it follow that if F : M → N is a

diffeomorphism then F ∗ : Hk
DR(N)→ Hk

DR(M) is an isomorphism. We will
see later that for V = R2\{0} the form ω = y

x2+y2
dx− x

x2+y2
dy is closed but

not exact. This will imply that H1
DR(R2\{0}) 6= 0. Since H1(R2) = 0 by

the exercise above, this will show that R2 is not diffeomorphic to R2\{0} .

4. Orientation

4.1. Orientation on a vector space.

Definition 4.1.1. Let V be a finite dimensional vector space. Let e =
(e1, . . . , en) and e′ = (e′1, . . . , e

′
n) be two bases of V . We say that e ∼ e′ if

the transition matrix A from e to e′ has detA > 0. It’s easy to see that ∼
satisfies the following properties

• if e ∼ e′ then e′ ∼ e ;
• if e ∼ e′ and e′ ∼ e′′ then e ∼ e′′ .

This means that ∼ is an equivalence relation on the set of all bases of V . We
will call equivalence classes mod ∼ orientations on V . We will say that two
bases e, e′ have the same orientation if they belong to the same equivalence
class, i.e. the transition matrix from e to e′ has positive determinant.
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Lemma 4.1.2. Let V be a finite dimensional vector space. Then there are
precisely two possible ordinations on V .

Proof. Let e = (e1, . . . , en) be a basis of V and let e′ = (−e1, e2 . . . , en).
Since the transition matrix A from e to e′ has determinant −1 they define
two different orientations on V . We claim that any other basis of V is
equivalent to either e or e′ : Let e′′ be a basis of V . Let B be the tran-
sition matrix from e′ to e′′ . Then the transition matrix from e to e′′ is
BA and det(BA) = detB · detA = −detB . This means that detB and
det(BA) have opposite signs, and thus one of them is positive and the other
is negative. Therefore e′′ ∼ e or e′′ ∼ e′ . �

We’ll call the two distinct orientations on V opposite or negative to each
other. If ε is an orientation and e = (e1, . . . , en) is a basis we put ε(e) = +1
if e is positively oriented with respect to ε and we put ε(e) = −1 if e is
negatively oriented with respect to ε .

Rn has a canonical orientation defined by the canonical basis (e1, . . . , en)
of Rn .

Orientations on V correspond to orientations on An(V ) ∼= R as follows.
Let w ∈ An(V ) be a nonzero alternating n-tensor. It defines an orienta-

tion εw as follows:
Given a basis e = (e1, . . . , en) we’ll say that e is positively oriented iff

w(e1, . . . , en) > 0. It’s easy to see that this defines an orientation on V . It’s
also obvious that if w′ = λw with λ 6= 0 then w and w′ define the same
orientation iff λ > 0.

4.2. Orientation on manifolds. Let Mn be a smooth n-dimensional
manifold (possibly with boundary)

Definition 4.2.1. An orientation ε on Mn is a choice of orientation ε(p)
on TpM for all p ∈M .

An orientation ε is called continuous if for any p ∈ M there exists an
open set U ⊂ M containing p and a collection of continuous vector fields
X1, . . . Xn on U such that X1(q), . . . Xn(q) is a basis of TqM for any q ∈ U
and ε(X1(q), . . . Xn(q)) = +1 for any q ∈ U .

A manifold M is called orientable if it admits a continuous orientation.

Exercise 4.2.2. Prove that an orientation ε is continuous if and only if
it’s smooth, i.e. for any p ∈ M there exists an open set U ⊂ M contain-
ing p and a collection of smooth vector fields X1, . . . Xn on U such that
X1(q), . . . Xn(q) is a basis of TqM for any q ∈ U and ε(X1(q), . . . Xn(q)) =
+1 for any q ∈ U .

From now on we will only consider continuous orientations. The relation
between orientations and nonzero alternating n-vectors on a fixed vector
space naturally carries over to manifolds as follows.
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Suppose ω is a smooth n-form on Mn such that ω(p) 6= 0 for any p ∈M .
Then ω defines an orientation εω on M as follows. Given p ∈M and a basis
v1, . . . vn of TpM we say that it’s positively oriented iff ω(p)(v1, . . . vn) > 0.

Lemma 4.2.3. εω is continuous.

Proof. Let p ∈M be any point. Let U be a coordinate ball containing p , so
U is diffeomorphic to an open ball B(0, 1) in Rn under some local coordinate
map x : U → Rn . Let Xi(q) = ∂

∂xi
(q). Then f(q) = ω(X1(q), . . . , Xn(q)) is

smooth on U . Since f(q) 6= 0 for any q , by the Intermediate Value Theorem
we must have that f(q) > 0 for all q ∈ U or f(q) < 0 for all q ∈ U . In the
first case this gives the required collection of continuous vector fields on U .
In the second case the same works after changing X1 to −X1 . �

Next we will show that the converse also holds, i.e. every continuous
orientation is equal to εω for some nowhere zero ω ∈ Ωn(Mn).

Lemma 4.2.4. Let ε be a continuous orientation on a smooth manifold
Mn . Then there exists a smooth form ω ∈ Ωn(M) such that ω(p) 6= 0 for
any p ∈M and ε = εω .

Proof. Let ε be a continuous orientation on M .
We will use the following terminology. Let ω be a smooth n-form on an

open subset U ⊂M . We will say that ω is positive on U if ω(p)(v1, . . . , vn) >
0 for any p ∈ U and any positive basis v1, . . . , vn of TpM . We need to prove
that there exists a positive form on U = M .

Observe that if ω1, . . . , ωm are positive forms on U and ϕ1, . . . ϕm : U →
R are smooth functions such that ϕi > 0 on U and

∑
i ϕi > 0 on U then∑

i ϕiωi is positive on U .
For any p ∈ M let Up be an open set containing p such that there

exist n smooth vector fields X1, . . . Xn on Up such that X1(q), . . . Xn(q)
is a positive basis of TqM for any q ∈ Up . Let X1(q), . . . , Xn(q) be the
dual basis of T ∗qM . Then X1, . . . , Xn are smooth forms on U (why?). Let

ωp = X1∧. . .∧Xn . Then it’s a smooth positive form on U . Take a partition
of unity {ϕi} subordinate to the cover {Up}p∈M of M . Then suppϕi ⊂ Upi
for some pi and by the observation above ω =

∑
i ϕiωi is positive on all of

M . �
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