1. DIFFERENTIAL FORMS ON SMOOTH MANIFOLDS

Definition 1.0.1. Let M™ be a smooth manifold (possibly with boundary).
Let w: E — M be a smooth vector bundle over M. A section of E is a
map s: M — E such that mos =idys. A section s is called smooth if it’s
smooth as amap s: M — FE.

Example 1.0.2. A smooth vector field on M is a smooth section of the
tangent bundle TM — M .

Definition 1.0.3. A differential k-form w on M is a section of the bundle
7. A¥(T*M) — M of alternating k-tensorson M. Le. wisamap w: M —
AF(T*M) such that w(p) € Ak(T;M) for any pe M.

Let U be an open subset in M™ and let x = (2!,...,2"): U =V be a
local coordinate chart on M where V' is an open subset in R™ (or H™.
Then for any p € U the tangent space T, M has a basis e; = 8%1|P’ ce,Ep =

%’p' Therefore T;*M has a dual basis e', ..., e" were e'(e;) = ;.
Let 2': U — R be the i-th coordinate map. Consider (dz?),: T,M — R.
Then (d:):i)p(a%j\p) = g%;]p = 0;;. In other words,

(dz"), = €' i=1,...,n
From now on we will use the notations (dz;), for the elements of the dual
basis instead of e’. However, these are the same objects and this is simply
a notation change.
Similarly, instead of writing e/ = et A ... A e we will write dz!|, =
dz"|, A ... A dz'|,. Thus, every k-form w on U can be uniquely written
as

w= Z wr(x)dz!
I=(i1<...<ig)
. This gives a canonical bijection

Lemma 1.0.4. Let w = Z[:(i1<.,.<¢k)wl($)dx1 be a k-form on U. Then
TFAE

(1) w is smooth as a map U — TU

(2) wr is a smooth function on U for every I = (i1 < ... <ig).

(8) For any smooth vector fields Vi, ..., Vi on U it holds that w(Vy(z), ...
s a smooth function on U .

We denote the set of all smooth k-form on M by QF(M). We'll denote
by Q*(M) the collection of all forms of all degrees i.e. UpQF(M).

Note that Q0(M) = C>°(M). All pointwise operations on alternating
tensors such as addition, multiplication by a number and wedge product
make sense for forms Moreover, if w € QF(M) and f: M — R is smooth
then f-w is also a smooth form.

Pullbacks make sense for forms as well.
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Given a smooth map f: M — N and w € Q¥(N) we define f*(w) by
[ (w)(p) = dfy (w(f(p))). Le. for vy, ... v € T,M we have f*w(p)(v1,...,vk) =
w(f(p))(dfp(v1),...,dfp(vg)). By computing f*(w) in local coordinates it
follows from Lemma that f*(w) is smooth.

Proposition 1.0.5.

a) If wi,wy € QF(M), fi,fo: M — R are smooth then fiw, + fows €
QF(M) is also a smooth k-form.

b) If w,m e Q" (M) then wAne Q" (M)

c) If F: M — N is smooth then F*: Q*(N) — Q*(N) is linear. Moreover
F*(g) =goF for any g € Q°(N).

d) If F: M — N and G: N — P are smooth and then (GoF)* = F*oG*

e) If f: M — R is smooth then f*(dt) = df - differential of f which in
local coordinates x on M can be written as ), %dmi

f) If F: M — N is smooth and w,n € Q*(N) then F*(wAn) = F*(w) A
F*(n)

9) If F=(F1,....Fp): M —R™ is smooth then F*(32;_ <. <icp) wr(y)dy') =
Z[(WI o F)dﬂl VANPIRVAN szk

Proof. a),b),c), f) are straightforward. d) follows from the definition of
pullback and the chain rule d(g o f) = dg o df. e) is immediate from the
definition: for p € M,v € T,(M) we have f*(dt)(v) = dt(dfp(v)) = dfp(v).
To get the coordinate expression for df recall that for any 1-form w we
have w = Ziw(a%i)da:i. In case of w = df this gives df =), df(a%i)d:ci =

> OF gy

i Ox;

g) follows from e), f):

Fe( Y wily)dy’) =D Fr(wi(y)dy" A Ady™) =D (wioF)F*(dy™)A. . AF*(dy™) =

I=(i1<...<i<k) I I

> (wro F)dF™ A ... NdF™
I
O

Formula g) from the previous Proposition has a particularly simple form
for top dimensional forms:

Lemma 1.0.6. Let F = (Fy,...,F,): U—V be smooth where U,V C R"
are open. Let w = u(y)dy' A...dy" be an n-form on V. Then

afi

F*(@) = (u(F (@) (det(5,!

Ndxz AL A dz"

2. EXTERIOR DERIVATIVE

Proposition 2.0.1. Let M™ be a smooth manifold (possibly with boundary).
There exists a unique operation, called exterior derivative, d: Q*(M) —
QY (M) satisfying the following conditions



a) Let f: V. — R be smooth. Then df = df , the differential of f.

b) d: QF(M) — QFHL(M) is linear

¢) dwAn) =dwAn+ (=1)mly A dy

d) dod=0

Proof. U C M be open and let = (x!,...,2™): U — V be a local coordi-
nate chart. Let w|y = > ;wr(x)da!. Define dw|y by the formula

(2.0.1) dw|y = ZdCL)](.'I}) A dx’
I

We claim that so defined d satisfies a)-d) of the Proposition. a)-c) are
straightforward. Let us verify d). For a O-form w = f we have df =
3 i _ 02 j i 02 i i
22 SLdz’. Then d(df) = 229‘ S 7, fdad Ndat =30 g2t dad A dat o+
0 i j 0 0 j i
aziaj;j dz' N da) = Ej<i[8xj8fmi - axiaj;j]dx] Adzt=0.

For a general w = Y, dw;(x) A dz! we have dw = Y, dw;(z) A dz’. By
¢) this implies d(dw)) = >, d(dwr(x) A dz?) =", d(dw;) A da! + (=1)wr A
d(dz’) = 0+0 = 0.

It’s easy to see that conditions a)-d) implies that d must satisfy (2.0.1))

in coordinates which proves uniqueness of d. Uniqueness of d also implies
that we can use (2.0.1)) to define d on global forms on M . O

Lemma 2.0.2. Let F: M — N be a smooth map. Then doF' = Fod.
Le. for any w e Q*(N) it holds

F*(dw) = d(F*(w))

Proof. By Proposition we know that if w = dg where g: N — R is
smooth then F*(dg) =d(go F)).

Let y be some local coordinate son N

By linearity it’s enough to prove the lemma for w = u(y)dy’.

We have dw = du A dy’. Hence F*(dw) = F*(du A dy') = F*(du) A
F*(dy") = d(uo F) NdF" A ... \NdF%.

One the other hand, F*(w) = (uoF)dF A...AdF% . Then by repeatedly
applying Proposition [2.0.1c0 and using that d(dF;) = 0 we get that

dF*(w) =d(uo F) NdF" A ... \NdF™

3. DE RHAM COHOMOLOGY

Definition 3.0.1. A form w € Q*(M) is called closed if dw = 0.
A form w € Q*(M) is called ezact if w = dn for some n € Q*~1(M).

Since d od = 0 it’s obvious that every exact form is closed. It’s natural
to ask to what extent the converse holds. Let B¥(M) be the set of all exact
k-forms and let Z*(M) be the set of all closed k forms. It’s obvious that
BE(M), Z*(M) are vector spaces and by above B*(M) c ZF(M).
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Definition 3.0.2. Let M"™ be a smooth manifold, possibly with boundary.
The k-th de Rham cohomology group of M is defined to be the quotient

group

Hpp(M) := Z*(M)/B*(M)
Since B¥(M) is a vector subspace of Z¥(M) the quotient HE (M) is a
vector space and not just a group.

By the definition that HJ, (M) = 0 iff every closed k-form is exact.

Example 3.0.3. Let M = V be an open subset of R?>. Then a 1-form
w on V has the form P(z,y)dr + Q(x,y)dy. By definition, w is exact
iff w = df for some smooth f: V — R, ie. if P(x,y)dr + Q(x,y)dy =
L@, y)da + L, y)day, or P(x,y) = G (x,y) and Q(z,y) = L (x,y).
On the other hand w is closed iff 0 = dw = d(P(z,y)dx + Q(z,y)dy) =
_oP 2Q dz A d _9P 9Q -0
( oy (1"73/)—’_ ox (l’,y)) €z Yy or oy (337y) ox (xay) .
Thus, every closed 1-form on V is exact iff for any smooth P,@Q: V — R
satisfying %—g(x,y) g—g(x, y) there exists a smooth f: V' — R such that

P:g—i and Q = gy(x,y).
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Exercise 3.0.4. Prove that H},p(R?) =0

Let f: M — N be asmooth map between manifolds. Since F* commutes
with d, F™* sends closed forms to closed forms and exact forms to exact
forms. Therefore it induces a homomorphism F*: HF(N) — HE (M)
for any k.

Since (GoF)x = F*oG* and Id}; = Id it follow that if F: M — N isa
diffeomorphism then F*: H ,(N) — H¥ (M) is an isomorphism. We will
see later that for V = R?\{0} the form w = mﬁyg dx — inyQ dy is closed but
not exact. This will imply that H},(R?\{0}) # 0. Since H'(R?) =0 by
the exercise above, this will show that R? is not diffeomorphic to R?\{0}.

4. ORIENTATION
4.1. Orientation on a vector space.

Definition 4.1.1. Let V be a finite dimensional vector space. Let e =
(e1,...,6en) and € = (€],...,€el,) be two bases of V. We say that e ~ ¢’ if
the transition matrix A from e to €’ has det A > 0. It’s easy to see that ~
satisfies the following properties

o if e~ ¢ then ¢ ~ ¢;

eif e~¢ and € ~¢” then e ~¢”.
This means that ~ is an equivalence relation on the set of all bases of V. We
will call equivalence classes mod ~ orientations on V. We will say that two
bases e, e’ have the same orientation if they belong to the same equivalence
class, i.e. the transition matrix from e to ¢’ has positive determinant.



5

Lemma 4.1.2. Let V be a finite dimensional vector space. Then there are
precisely two possible ordinations on V.

Proof. Let e = (e1,...,e,) be a basis of V and let €/ = (—e1,ez...,¢€,).
Since the transition matrix A from e to ¢’ has determinant —1 they define
two different orientations on V. We claim that any other basis of V is
equivalent to either e or €': Let €” be a basis of V. Let B be the tran-
sition matrix from €’ to ¢”. Then the transition matrix from e to ¢’ is
BA and det(BA) = det B - det A = —det B. This means that det B and
det(BA) have opposite signs, and thus one of them is positive and the other
is negative. Therefore ¢’ ~ e or ¢’ ~ ¢€'. O

We'll call the two distinct orientations on V' opposite or negative to each

other. If € is an orientation and e = (ey,...,e,) is a basis we put e(e) = +1
if e is positively oriented with respect to e and we put e(e) = —1 if e is
negatively oriented with respect to €.

R™ has a canonical orientation defined by the canonical basis (eq,...,ey,)
of R™.

Orientations on V' correspond to orientations on A™(V) = R as follows.

Let w € A"(V) be a nonzero alternating n-tensor. It defines an orienta-
tion €, as follows:

Given a basis e = (eq,...,e,) we'll say that e is positively oriented iff
w(eq,...,en) > 0. It’s easy to see that this defines an orientation on V. It’s
also obvious that if w’ = Aw with A # 0 then w and w’ define the same
orientation iff A > 0.

4.2. Orientation on manifolds. Let M™ be a smooth n-dimensional
manifold (possibly with boundary)

Definition 4.2.1. An orientation € on M™ is a choice of orientation €(p)
on T,M for all p € M.

An orientation € is called continuous if for any p € M there exists an
open set U C M containing p and a collection of continuous vector fields
Xi,... Xy on U such that X1(q),...Xn(q) is a basis of T,M for any ¢ € U
and €(X1(q),...Xn(q)) = +1 for any ¢ € U.

A manifold M is called orientable if it admits a continuous orientation.

Exercise 4.2.2. Prove that an orientation € is continuous if and only if
it’s smooth, i.e. for any p € M there exists an open set U C M contain-
ing p and a collection of smooth vector fields Xq,... X, on U such that
Xi1(9),...Xn(q) is a basis of TyM for any q € U and €(X1(q),... Xn(q)) =
+1 for any q € U.

From now on we will only consider continuous orientations. The relation
between orientations and nonzero alternating n-vectors on a fixed vector
space naturally carries over to manifolds as follows.



Suppose w is a smooth n-form on M"™ such that w(p) # 0 for any p € M.
Then w defines an orientation €, on M as follows. Given p € M and a basis
v1, ...y of TyM we say that it’s positively oriented iff w(p)(v1,...v,) > 0.

Lemma 4.2.3. ¢, is continuous.

Proof. Let p € M be any point. Let U be a coordinate ball containing p, so
U is diffeomorphic to an open ball B(0,1) in R™ under some local coordinate
map x: U — R". Let X;(q) = 8%1((1) Then f(q) = w(X1(q),...,Xn(q)) is
smooth on U. Since f(q) # 0 for any ¢, by the Intermediate Value Theorem
we must have that f(q) >0 for all ¢ € U or f(q) <0 for all ¢ € U. In the
first case this gives the required collection of continuous vector fields on U .
In the second case the same works after changing X; to —X;. (]

Next we will show that the converse also holds, i.e. every continuous
orientation is equal to €, for some nowhere zero w € Q"(M™").

Lemma 4.2.4. Let € be a continuous orientation on a smooth manifold
M™. Then there exists a smooth form w € Q"(M) such that w(p) # 0 for
any p € M and € = ¢, .

Proof. Let € be a continuous orientation on M .

We will use the following terminology. Let w be a smooth n-form on an
open subset U C M. We will say that w is positiveon U if w(p)(vy,...,vy) >
0 for any p € U and any positive basis vy, ..., v, of T, M. We need to prove
that there exists a positive form on U = M.

Observe that if wq,...,w, are positive forms on U and ¢q,...0pn: U —
R are smooth functions such that ¢; > 0 on U and ) . ¢; > 0 on U then
>, piw; is positive on U.

For any p € M let U, be an open set containing p such that there
exist n smooth vector fields Xi,...X, on U, such that Xi(q),...X,(q)
is a positive basis of T,M for any ¢ € U,. Let X'(q),...,X"(q) be the
dual basis of T*M . Then X',..., X" are smooth forms on U (why?). Let
wp = XUA...AX"™. Then it’s a smooth positive form on U. Take a partition
of unity {y;} subordinate to the cover {U,}penr of M. Then supp; C U,
for some p; and by the observation above w = ), ¢;w; is positive on all of
M. O
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