1. DIFFERENTIAL FORMS ON SMOOTH MANIFOLDS

Definition 1.0.1. Let M^n be a smooth manifold (possibly with boundary). Let $\pi: E \to M$ be a smooth vector bundle over M. A section of E is a map $s: M \to E$ such that $\pi \circ s = \operatorname{id}_M$. A section s is called smooth if it's smooth as a map $s: M \to E$.

Example 1.0.2. A smooth vector field on M is a smooth section of the tangent bundle $TM \to M$.

Definition 1.0.3. A differential k-form ω on M is a section of the bundle $\pi: \Lambda^k(T^*M) \to M$ of alternating k-tensors on M. I.e. ω is a map $\omega: M \to \Lambda^k(T^*M)$ such that $\omega(p) \in \Lambda^k(T_p^*M)$ for any $p \in M$.

Let U be an open subset in M^n and let $x = (x^1, \ldots, x^n) \colon U \to V$ be a local coordinate chart on M where V is an open subset in \mathbb{R}^n (or H^n .

Then for any $p \in U$ the tangent space T_pM has a basis $e_1 = \frac{\partial}{\partial x_1}|_p, \ldots, e_n = \frac{\partial}{\partial x_n}|_p$. Therefore T_p^*M has a dual basis e^1, \ldots, e^n were $e^i(e_j) = \delta_{ij}$.

Let $x^i: U \to \mathbb{R}$ be the *i*-th coordinate map. Consider $(dx^i)_p: T_pM \to \mathbb{R}$. Then $(dx^i)_p(\frac{\partial}{\partial x_i}|_p) = \frac{\partial x^i}{\partial x_i}|_p = \delta_{ij}$. In other words,

$$(dx^i)_p = e^i \qquad i = 1, \dots, n$$

From now on we will use the notations $(dx_i)_p$ for the elements of the dual basis instead of e^i . However, these are the same objects and this is simply a notation change.

Similarly, instead of writing $e^{I} = e^{i_1} \wedge \ldots \wedge e^{i_k}$ we will write $dx^{I}|_p = dx^{i_1}|_p \wedge \ldots \wedge dx^{i_k}|_p$. Thus, every k-form ω on U can be uniquely written as

$$\omega = \sum_{I = (i_1 < \ldots < i_k)} \omega_I(x) dx^I$$

. This gives a canonical bijection

Lemma 1.0.4. Let $\omega = \sum_{I=(i_1 < ... < i_k)} \omega_I(x) dx^I$ be a k-form on U. Then TFAE

- (1) ω is smooth as a map $U \to TU$
- (2) ω_I is a smooth function on U for every $I = (i_1 < \ldots < i_k)$.
- (3) For any smooth vector fields V_1, \ldots, V_k on U it holds that $\omega(V_1(x), \ldots, V_k(x))$ is a smooth function on U.

We denote the set of all smooth k-form on M by $\Omega^k(M)$. We'll denote by $\Omega^*(M)$ the collection of all forms of all degrees i.e. $\cup_k \Omega^k(M)$.

Note that $\Omega^0(M) = C^{\infty}(M)$. All pointwise operations on alternating tensors such as addition, multiplication by a number and wedge product make sense for forms Moreover, if $\omega \in \Omega^k(M)$ and $f: M \to \mathbb{R}$ is smooth then $f \cdot \omega$ is also a smooth form.

Pullbacks make sense for forms as well.

Given a smooth map $f: M \to N$ and $\omega \in \Omega^k(N)$ we define $f^*(\omega)$ by $f^*(\omega)(p) = df_p^*(\omega(f(p)))$. I.e. for $v_1, \ldots v_k \in T_pM$ we have $f^*\omega(p)(v_1, \ldots, v_k) = \omega(f(p))(df_p(v_1), \ldots, df_p(v_k))$. By computing $f^*(\omega)$ in local coordinates it follows from Lemma 1.0.4 that $f^*(\omega)$ is smooth.

Proposition 1.0.5.

- a) If $\omega_1, \omega_2 \in \Omega^k(M)$, $f_1, f_2: M \to \mathbb{R}$ are smooth then $f_1\omega_1 + f_2\omega_2 \in \Omega^k(M)$ is also a smooth k-form.
- b) If $\omega, \eta \in \Omega^*(M)$ then $\omega \wedge \eta \in \Omega^*(M)$
- c) If $F: M \to N$ is smooth then $F^*: \Omega^*(N) \to \Omega^*(N)$ is linear. Moreover $F^*(g) = g \circ F$ for any $g \in \Omega^0(N)$.
- d) If $F: M \to N$ and $G: N \to P$ are smooth and then $(G \circ F)^* = F^* \circ G^*$
- e) If $f: M \to \mathbb{R}$ is smooth then $f^*(dt) = df$ differential of f which in local coordinates x on M can be written as $\sum_i \frac{\partial f}{\partial x_i} dx^i$
- f) If $F: M \to N$ is smooth and $\omega, \eta \in \Omega^*(N)$ then $F^*(\omega \land \eta) = F^*(\omega) \land F^*(\eta)$
- g) If $F = (F_1, \ldots, F_m)$: $M \to \mathbb{R}^m$ is smooth then $F^*(\sum_{I=(i_1 < \ldots < i < k)} w_I(y) dy^I) = \sum_I (\omega_I \circ F) dF_{i_1} \land \ldots \land dF_{i_k}$

Proof. a),b),c), f) are straightforward. d) follows from the definition of pullback and the chain rule $d(g \circ f) = dg \circ df$. e) is immediate from the definition: for $p \in M, v \in T_p(M)$ we have $f^*(dt)(v) = dt(df_p(v)) = df_p(v)$.

To get the coordinate expression for df recall that for any 1-form ω we have $\omega = \sum_i \omega(\frac{\partial}{\partial x_i}) dx^i$. In case of $\omega = df$ this gives $df = \sum_i df(\frac{\partial}{\partial x_i}) dx^i = \sum_i \frac{\partial f}{\partial x_i} dx^i$

g) follows from e), f):

$$F^*(\sum_{I=(i_1<\ldots< i< k)} w_I(y)dy^I) = \sum_I F^*(w_I(y)dy^{i_1}\wedge\ldots\wedge dy^{i_k}) = \sum_I (\omega_I \circ F)F^*(dy^{i_1})\wedge\ldots\wedge F^*(dy^{i_k}) = \sum_I (\omega_I \circ F)dF^{i_1}\wedge\ldots\wedge dF^{i_k}$$

Formula g) from the previous Proposition has a particularly simple form for top dimensional forms:

Lemma 1.0.6. Let $F = (F_1, \ldots, F_n)$: $U \to V$ be smooth where $U, V \subset \mathbb{R}^n$ are open. Let $\omega = u(y)dy^1 \wedge \ldots dy^n$ be an *n*-form on *V*. Then

$$F^*(\omega) = (u(F(x))(\det(\frac{\partial f_i}{\partial x_j}))dx^1 \wedge \ldots \wedge dx^n)$$

2. Exterior derivative

Proposition 2.0.1. Let M^n be a smooth manifold (possibly with boundary). There exists a unique operation, called exterior derivative, $d: \Omega^*(M) \to \Omega^{*+1}(M)$ satisfying the following conditions a) Let $f: V \to \mathbb{R}$ be smooth. Then df = df, the differential of f. b) $d: \Omega^k(M) \to \Omega^{k+1}(M)$ is linear c) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{|\omega| \cdot |\eta|} \omega \wedge d\eta$ d) $d \circ d = 0$

Proof. $U \subset M$ be open and let $x = (x^1, \ldots, x^n)$: $U \to V$ be a local coordinate chart. Let $\omega|_U = \sum_I \omega_I(x) dx^I$. Define $d\omega|_U$ by the formula

(2.0.1)
$$d\omega|_U = \sum_I d\omega_I(x) \wedge dx$$

We claim that so defined d satisfies a)-d) of the Proposition. a)-c) are straightforward. Let us verify d). For a 0-form $\omega = f$ we have $df = \sum_i \frac{\partial f}{\partial x_i} dx^i$. Then $d(df) = \sum_j \sum_i \frac{\partial^2 f}{\partial x_j \partial x_i} dx^j \wedge dx^i = \sum_{j < i} \frac{\partial^2 f}{\partial x_j \partial x_i} dx^j \wedge dx^i + \frac{\partial^2 f}{\partial x_i \partial x_j} dx^i \wedge dx^j = \sum_{j < i} [\frac{\partial^2 f}{\partial x_j \partial x_i} - \frac{\partial^2 f}{\partial x_i \partial x_j}] dx^j \wedge dx^i = 0.$

For a general $\omega = \sum_{I} d\omega_{I}(x) \wedge dx^{I}$ we have $d\omega = \sum_{I} d\omega_{I}(x) \wedge dx^{I}$. By c) this implies $d(d\omega) = \sum_{I} d(d\omega_{I}(x) \wedge dx^{I}) = \sum_{I} d(d\omega_{i}) \wedge dx^{I} + (-1)\omega_{I} \wedge d(dx^{I}) = 0 + 0 = 0$.

It's easy to see that conditions a)-d) implies that d must satisfy (2.0.1) in coordinates which proves uniqueness of d. Uniqueness of d also implies that we can use (2.0.1) to define d on global forms on M.

Lemma 2.0.2. Let $F: M \to N$ be a smooth map. Then $d \circ F = F \circ d$. *I.e.* for any $\omega \in \Omega^*(N)$ it holds

$$F^*(d\omega) = d(F^*(\omega))$$

Proof. By Proposition 1.0.5 we know that if $\omega = dg$ where $g: N \to \mathbb{R}$ is smooth then $F^*(dg) = d(g \circ F)$.

Let y be some local coordinate son N

By linearity it's enough to prove the lemma for $\omega = u(y)dy^{I}$.

We have $d\omega = du \wedge dy^I$. Hence $F^*(d\omega) = F^*(du \wedge dy^I) = F^*(du) \wedge F^*(dy^I) = d(u \circ F) \wedge dF^{i_1} \wedge \ldots \wedge dF^{i_k}$.

One the other hand, $F^*(\omega) = (u \circ F) dF^{i_1} \wedge \ldots \wedge dF^{i_k}$. Then by repeatedly applying Proposition 2.0.1c0 and using that $d(dF_i) = 0$ we get that

$$dF^*(\omega) = d(u \circ F) \wedge dF^{i_1} \wedge \ldots \wedge dF^{i_k}$$

3. DE RHAM COHOMOLOGY

Definition 3.0.1. A form $\omega \in \Omega^*(M)$ is called *closed* if $d\omega = 0$. A form $\omega \in \Omega^*(M)$ is called *exact* if $\omega = d\eta$ for some $\eta \in \Omega^{*-1}(M)$.

Since $d \circ d = 0$ it's obvious that every exact form is closed. It's natural to ask to what extent the converse holds. Let $B^k(M)$ be the set of all exact k-forms and let $Z^k(M)$ be the set of all closed k forms. It's obvious that $B^k(M), Z^k(M)$ are vector spaces and by above $B^k(M) \subset Z^k(M)$. **Definition 3.0.2.** Let M^n be a smooth manifold, possibly with boundary. The k-th de Rham cohomology group of M is defined to be the quotient group

$$H^k_{DR}(M) := Z^k(M)/B^k(M)$$

Since $B^k(M)$ is a vector subspace of $Z^k(M)$ the quotient $H^k_{DR}(M)$ is a vector space and not just a group.

By the definition that $H_{DR}^k(M) = 0$ iff every closed k-form is exact.

Example 3.0.3. Let M = V be an open subset of \mathbb{R}^2 . Then a 1-form ω on V has the form P(x,y)dx + Q(x,y)dy. By definition, w is exact iff $\omega = df$ for some smooth $f: V \to \mathbb{R}$, i.e. if $P(x,y)dx + Q(x,y)dy = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dxy$, or $P(x,y) = \frac{\partial f}{\partial x}(x,y)$ and $Q(x,y) = \frac{\partial f}{\partial y}(x,y)$. On the other hand ω is closed iff $0 = d\omega = d(P(x,y)dx + Q(x,y)dy) = (-\frac{\partial P}{\partial y}(x,y) + \frac{\partial Q}{\partial x}(x,y))dx \wedge dy$ or $-\frac{\partial P}{\partial y}(x,y) + \frac{\partial Q}{\partial x}(x,y) = 0$. Thus, every closed 1-form on V is exact iff for any smooth $P,Q: V \to \mathbb{R}$ satisfying $\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$ there exists a smooth $f: V \to \mathbb{R}$ such that

 $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}(x, y)$.

Exercise 3.0.4. Prove that $H_{DR}^1(\mathbb{R}^2) = 0$

Let $f: M \to N$ be a smooth map between manifolds. Since F^* commutes with d, F^* sends closed forms to closed forms and exact forms to exact forms. Therefore it induces a homomorphism $F^* \colon H^k_{DR}(N) \to H^k_{DR}(M)$ for any k.

Since $(G \circ F) * = F^* \circ G^*$ and $Id_M^* = Id$ it follow that if $F: M \to N$ is a diffeomorphism then $F^*: H_{DR}^k(N) \to H_{DR}^k(M)$ is an isomorphism. We will see later that for $V = \mathbb{R}^2 \setminus \{0\}$ the form $\omega = \frac{y}{x^2 + y^2} dx - \frac{x}{x^2 + y^2} dy$ is closed but not exact. This will imply that $H^1_{DR}(\mathbb{R}^2 \setminus \{0\}) \neq 0$. Since $H^1(\mathbb{R}^2) = 0$ by the exercise above, this will show that \mathbb{R}^2 is not diffeomorphic to $\mathbb{R}^2 \setminus \{0\}$.

4. ORIENTATION

4.1. Orientation on a vector space.

Definition 4.1.1. Let V be a finite dimensional vector space. Let e = (e_1,\ldots,e_n) and $e'=(e'_1,\ldots,e'_n)$ be two bases of V. We say that $e\sim e'$ if the transition matrix A from e to e' has det A > 0. It's easy to see that ~ satisfies the following properties

- if $e \sim e'$ then $e' \sim e$;
- if $e \sim e'$ and $e' \sim e''$ then $e \sim e''$.

This means that \sim is an equivalence relation on the set of all bases of V. We will call equivalence classes mod \sim orientations on V. We will say that two bases e, e' have the same orientation if they belong to the same equivalence class, i.e. the transition matrix from e to e' has positive determinant.

Lemma 4.1.2. Let V be a finite dimensional vector space. Then there are precisely two possible ordinations on V.

Proof. Let $e = (e_1, \ldots, e_n)$ be a basis of V and let $e' = (-e_1, e_2, \ldots, e_n)$. Since the transition matrix A from e to e' has determinant -1 they define two different orientations on V. We claim that any other basis of V is equivalent to either e or e': Let e'' be a basis of V. Let B be the transition matrix from e' to e''. Then the transition matrix from e to e'' is BA and det $(BA) = \det B \cdot \det A = -\det B$. This means that det B and det(BA) have opposite signs, and thus one of them is positive and the other is negative. Therefore $e'' \sim e$ or $e'' \sim e'$.

We'll call the two distinct orientations on V opposite or negative to each other. If ϵ is an orientation and $e = (e_1, \ldots, e_n)$ is a basis we put $\epsilon(e) = +1$ if e is positively oriented with respect to ϵ and we put $\epsilon(e) = -1$ if e is negatively oriented with respect to ϵ .

 \mathbb{R}^n has a canonical orientation defined by the canonical basis (e_1, \ldots, e_n) of \mathbb{R}^n .

Orientations on V correspond to orientations on $\mathcal{A}^n(V) \cong \mathbb{R}$ as follows. Let $w \in \mathcal{A}^n(V)$ be a nonzero alternating *n*-tensor. It defines an orienta-

tion
$$\epsilon_w$$
 as follow

Given a basis $e = (e_1, \ldots, e_n)$ we'll say that e is positively oriented iff $w(e_1, \ldots, e_n) > 0$. It's easy to see that this defines an orientation on V. It's also obvious that if $w' = \lambda w$ with $\lambda \neq 0$ then w and w' define the same orientation iff $\lambda > 0$.

4.2. Orientation on manifolds. Let M^n be a smooth *n*-dimensional manifold (possibly with boundary)

Definition 4.2.1. An orientation ϵ on M^n is a choice of orientation $\epsilon(p)$ on T_pM for all $p \in M$.

An orientation ϵ is called *continuous* if for any $p \in M$ there exists an open set $U \subset M$ containing p and a collection of continuous vector fields X_1, \ldots, X_n on U such that $X_1(q), \ldots, X_n(q)$ is a basis of T_qM for any $q \in U$ and $\epsilon(X_1(q), \ldots, X_n(q)) = +1$ for any $q \in U$.

A manifold M is called *orientable* if it admits a continuous orientation.

Exercise 4.2.2. Prove that an orientation ϵ is continuous if and only if it's smooth, i.e. for any $p \in M$ there exists an open set $U \subset M$ containing p and a collection of **smooth** vector fields X_1, \ldots, X_n on U such that $X_1(q), \ldots, X_n(q)$ is a basis of T_qM for any $q \in U$ and $\epsilon(X_1(q), \ldots, X_n(q)) = +1$ for any $q \in U$.

From now on we will only consider continuous orientations. The relation between orientations and nonzero alternating n-vectors on a fixed vector space naturally carries over to manifolds as follows. Suppose ω is a smooth *n*-form on M^n such that $\omega(p) \neq 0$ for any $p \in M$. Then ω defines an orientation ϵ_{ω} on M as follows. Given $p \in M$ and a basis v_1, \ldots, v_n of T_pM we say that it's positively oriented iff $\omega(p)(v_1, \ldots, v_n) > 0$.

Lemma 4.2.3. ϵ_{ω} is continuous.

Proof. Let $p \in M$ be any point. Let U be a coordinate ball containing p, so U is diffeomorphic to an open ball B(0,1) in \mathbb{R}^n under some local coordinate map $x: U \to \mathbb{R}^n$. Let $X_i(q) = \frac{\partial}{\partial x_i}(q)$. Then $f(q) = \omega(X_1(q), \ldots, X_n(q))$ is smooth on U. Since $f(q) \neq 0$ for any q, by the Intermediate Value Theorem we must have that f(q) > 0 for all $q \in U$ or f(q) < 0 for all $q \in U$. In the first case this gives the required collection of continuous vector fields on U. In the second case the same works after changing X_1 to $-X_1$.

Next we will show that the converse also holds, i.e. every continuous orientation is equal to ϵ_{ω} for some nowhere zero $\omega \in \Omega^n(M^n)$.

Lemma 4.2.4. Let ϵ be a continuous orientation on a smooth manifold M^n . Then there exists a smooth form $\omega \in \Omega^n(M)$ such that $\omega(p) \neq 0$ for any $p \in M$ and $\epsilon = \epsilon_{\omega}$.

Proof. Let ϵ be a continuous orientation on M.

We will use the following terminology. Let ω be a smooth *n*-form on an open subset $U \subset M$. We will say that ω is *positive* on U if $\omega(p)(v_1, \ldots, v_n) > 0$ for any $p \in U$ and any positive basis v_1, \ldots, v_n of T_pM . We need to prove that there exists a positive form on U = M.

Observe that if $\omega_1, \ldots, \omega_m$ are positive forms on U and $\varphi_1, \ldots, \varphi_m \colon U \to \mathbb{R}$ are smooth functions such that $\varphi_i \ge 0$ on U and $\sum_i \varphi_i > 0$ on U then $\sum_i \varphi_i \omega_i$ is positive on U.

For any $p \in M$ let U_p be an open set containing p such that there exist n smooth vector fields X_1, \ldots, X_n on U_p such that $X_1(q), \ldots, X_n(q)$ is a positive basis of T_qM for any $q \in U_p$. Let $X^1(q), \ldots, X^n(q)$ be the dual basis of T_q^*M . Then X^1, \ldots, X^n are smooth forms on U (why?). Let $\omega_p = X^1 \wedge \ldots \wedge X^n$. Then it's a smooth positive form on U. Take a partition of unity $\{\varphi_i\}$ subordinate to the cover $\{U_p\}_{p \in M}$ of M. Then $\sup \varphi_i \subset U_{p_i}$ for some p_i and by the observation above $\omega = \sum_i \varphi_i \omega_i$ is positive on all of M.