1. VOLUME FORMS ON RIEMANNIAN MANIFOLDS

Let (M™,g) be a smooth oriented manifold of dimension n with a Rie-
mannian metric g. Let w = dvoly; be the volume form on M. Recall
that it is defined as follows. For a point p € M let ey,...,e, be a positive
orthonormal basis of T,M. Then w, = e' A...Ae™. Note that this form
is well-defined because if €1,...,¢é, is another positive orthonormal basis of
T,M then w, = el A...Ane" =det A-é; A...Aé, where A is the transition
matrix from e to €. Since both bases are orthonormal A € O(n) and hence
det A = +1. Since both bases are positive det A > 0 and hence det A =1
and therefore e! A...Ae” =& A...\Ep.

Let x be local coordinate chart near p positively oriented with respect
to the orientation on M. oriented. let g;i(z) = g(%, %)(a:) Then in
coordinates x the volume form can be written as

(1.0.1) dvolys = y/det(gij)dx* A ... Ada™

This follows immediately from the following observation. Given vectors
V1,...,0, € T,M and a positive orthorormal basis e1,...e, let A be the
n X n matrix whose i-th column is given by the coordinates of v; in the
basis e. Then |e! A... Ae"| = |det A] = /det(AtA). Applying this to
Vlyewn, Uy = 6%1""’% gives .

Note that since the volume form is by construction compatible with the
orientation of M at every point we have that

/ dvolys > 0.
M

Now, suppose S C N is a submanifold of codimension 1. Let N be a unit
normal vector field on S. Consider S with the orientation induced by nor-
mal field N and the orientation on M . Let gg be the induced Riemannian
metric on S.

Then the volume form on S can be given by the formula

dVOlS = iN(dVOlM)

i.e. for any p € S and any v1,...,v,—1 € 1,5 we have

dvolg(vy,...,vp—1) = (dvolpyr)(N(p),v1,...,Vn—1)

2. STOKES’S THEOREM

Theorem 2.0.1 (Stokes’ Theorem). Let M™ be an oriented n-dimensional
manifold. let w be a smoothn — 1-form on M with compact support. then

/ w:/dw
oM M

Example 2.0.2. Let M = [0,1] with the canonical orientation. Then

OM = +{1} — {0}. Let w = f: M — R be a smooth function. Then

Jorr £ = f(1) = f(0). On the other hand dw = df = f'(x)dz. Thus,
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Sy dw = fol f'(z)dx. Hence, in this case Stokes’s formula [y, w = [, dw

reduces to f(1) — f(0) = fol f'(x)dz which is the Fundamental Theorem of
Calculus.

Example 2.0.3. Let w = M. Then dw = dx Ady. Hence, by Stokes’s
formula for any compact domain D with smooth boundary in R? we have

dy — yd
/ W:/daz/\dy:Area(D)
oD 2 D

In particular, for D = {2? + y* < 1} this gives [, w = Area (D) = 7.
Computing [, w using the parameterization ¢(t) = (cost,sint) we find

1 dt
that [,,w = f[O,27r) plw=fyT=7

Corollary 2.0.4. Let w be exact n-form on a compact oriented manifold
M of dimension n. Then [,,w=0.

Corollary 2.0.5. Let w be a closed n — 1-form on a compact oriented
manifold M of dimension n. Then faMW =0.

Corollary 2.0.6. Let M™ be an oriented manifold. Let w be a closed k-
form on M. Let S C M be a compact oriented submanifold on M without
a boundary. Suppose fsw #0. Then

(1) w is not exact on M and w|s is not exact on S.

(2) S does not bound a compact oriented submanifold N*+t1 c M .
Example 2.0.7. Let M = R™"\{0},5 = St ={2?+.. .22 =1}, w =
Zi(71)i_lxidg|6;‘/,\['/\dzi/\'"Ad‘rn . Then fSn71 w # 0 and dw = 0. Therefore, the
previous corollary applies. Hence w is not exact on R"\{0} and S"~! does
not bound a compact oriented submanifold in R™\{0}.

Let M™ be a compact oriented manifold without boundary. Observe
that every n-form on M is closed for dimension reasons. Consider the map
I: Q"(M) — R given by I(w) = [,,;w. This map is obviously linear. By
Corollary exact forms line in the kernel of I. Therefore, I induces a
liner map I,: Hp (M) — R. Note that for any orientation form w on M
we have that I(w) > 0. therefore, I (and hence I,) is onto.

Theorem 2.0.8. Let M™ be a compact oriented manifold without boundary.
Then I.: H}yp(M) — R is an isomorphism.

We will prove this theorem later for general M. Let’s show that it holds
for M = S'. We only need to check that ker I* = 0. Let w be 1-form on
S! such that I(w) = [q w = 0. We need to show that w is exact.

Recall that S! = R/Z and we have a natural projection map 7: R — S!
given by 7(t) = (cost,sint) which gives a diffeomorphism onto S\ {point}
when restricted to any interval (a,a+27). Therefore f;”ﬂ W= Jqw=0

for any a € R. We have m*w = u(t)dt for some smooth function u(t) on R.
Define f: R — R by the formula, f(z) = [ u(t)dt. Then df = 7*w and
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by above f(a + 27) — f(a) = f;”ﬂ u(t)dt = 0 for any real a. Thus, f is
27-periodic. Therefore it induces a smooth function f: S' — R such that
fom=f.

By construction df = w. [O.

3. POINCARE LEMMA

Theorem 3.0.1. Let M™ be a smooth manifold. Let w: M xR — M be
the canonical projection and let s: M — M x R be the zero section given
by s(p) = (p,0). Then the induced maps s*: H*(M x R) — H*(M) and
™ H*(M) — H*(M x R) are inverse to each other. In particular, both
are isomorphisms.

Proof. Since mos =idys we obviously have that s*om™ = idy- (7). We need
to show that s* o ™ = idg«(prxr) We will construct a homotopy operator
K: Q*(M x R) — Q*1(M x R) satisfying

(3.0.1) w— (1% 06w = (-1 (dK — Kd)w

Let us first deal with the special case when M = U is an open subset in
R™. Let us define the operator K as follows. Let w be a k-form on U x R.
We can uniquely write it as

W= Z ar(z, t)dz! + Z by(z, t)de’ A dt
I=(i1<...<ig) J=(j1<...<Jk—1)

Define K(w) to be
t
Kw= Y / by (z, 5)ds)dz’
T=(j1 <o) 70
we claim that K satisfies . By linearity it’s enough to check it for
forms of the form a(z,t)dz! and b(x,t)dz’ A dt.
Case 1. Let w = a(x,t)dz’. Then 7* o s*(w) = a(x,0)dz! and hence

w— 7" 0 s*(w) = (a(x,t) — a(z,0))dz!

By definition of K, K(w) = 0. Also, dw = dandz! = 32, 2450 g & dae?

%dt ANdxl =3, %dwi Adx! + (—1)k%?t)dl‘l A dt. Therefore
t
Kdw = (—1)k(/0 aagi’ %) ds)da! = (—1)*(a(a, £) — alz, 0))da’

and
(—l)k_l(dK — Kd)w = (—1)k_1(—Kd)w = (a(x,t) — a(x, 0))dm]
which verifies (3.0.1)).

Case 2. Now suppose w = b(z,t)dz” A dt. Then s*(w) = 0 and hence
7 0 s*(w) = 0. Therefore

w— 7% 05" (W) =w = b(x, t)dz’ Adt
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Next, Kw = (fg b(x,s)ds)dz’ and

0
oxt

t
dKw = bz, t)dt Ada’ +) / (b(z, s)ds)dz® A da! =

. ¥ 0b(z, s) :
_1)k-1 J ) i I
= (—=1)" "b(x,t)dx’ Ndt+ % (/0 O ds)dx' A dz

On the other hand,

b(x,t :
do =S ) i gl A
- ox’
and . Ob(z, )
T, 8 :
Kdw = 2L ds)dzt A da!
w ZZ:(/O O s)dx x

Therefore,

dKw — Kdw = (=1)*"'b(x, t)dz’ A dt
which again verifies (3.0.1]).

Thus, we have proved that holds for any k-form on M x R when
M = U which is an open subset in R". For a general M we can cover it by
local coordinate charts x,: U, — V, and construct a subordinate partition
of unity {¢;}:2,. Then any w € Q*(M) can be written as w = ), w; where
w; = p;w. then supp g;w; is contained in U; and we already know how to
define K for each w; because U; is diffeomorphic to an open subset of R™.
We can now define K by linearly extending it linearly:

Kw) =Y K(w)

It’s immediate to check that K still satisfies (3.0.1]).
Now, let w be any closed form on M, i.e dw = 0. then (3.0.1) gives that

w— (10w = (=) (dK — Kd)w = (=1)*I"Y(dK)w + 0

which means that w — (7* 0 s*)w is exact and therefore [w] = [(7* 0 §%)w] €
H*(M x R). O
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