
1. Volume forms on Riemannian manifolds

Let (Mn, g) be a smooth oriented manifold of dimension n with a Rie-
mannian metric g . Let ω = dvolM be the volume form on M . Recall
that it is defined as follows. For a point p ∈ M let e1, . . . , en be a positive
orthonormal basis of TpM . Then ωp = e1 ∧ . . . ∧ en . Note that this form
is well-defined because if ẽ1, . . . , ẽn is another positive orthonormal basis of
TpM then ωp = e1 ∧ . . .∧ en = detA · ẽ1 ∧ . . .∧ ẽn where A is the transition
matrix from e to ẽ . Since both bases are orthonormal A ∈ O(n) and hence
detA = ±1. Since both bases are positive detA > 0 and hence detA = 1
and therefore e1 ∧ . . . ∧ en = ẽ1 ∧ . . . ∧ ẽn .

Let x be local coordinate chart near p positively oriented with respect
to the orientation on M . oriented. let gij(x) = g( ∂

∂xi
, ∂
∂xi

)(x) Then in
coordinates x the volume form can be written as

(1.0.1) dvolM =
√

det(gij)dx
1 ∧ . . . ∧ dxn

This follows immediately from the following observation. Given vectors
v1, . . . , vn ∈ TpM and a positive orthorormal basis e1, . . . en let A be the
n × n matrix whose i-th column is given by the coordinates of vi in the
basis e . Then |e1 ∧ . . . ∧ en| = | detA| =

√
det(AtA). Applying this to

v1, . . . , vn = ∂
∂x1

, . . . , ∂
∂xn gives (1.0.1).

Note that since the volume form is by construction compatible with the
orientation of M at every point we have that∫

M
dvolM > 0.

Now, suppose S ⊂ N is a submanifold of codimension 1. Let N be a unit
normal vector field on S . Consider S with the orientation induced by nor-
mal field N and the orientation on M . Let gS be the induced Riemannian
metric on S .

Then the volume form on S can be given by the formula

dvolS = iN (dvolM )

i.e. for any p ∈ S and any v1, . . . , vn−1 ∈ TpS we have

dvolS(v1, . . . , vn−1) = (dvolM )(N(p), v1, . . . , vn−1)

2. Stokes’s Theorem

Theorem 2.0.1 (Stokes’ Theorem). Let Mn be an oriented n-dimensional
manifold. let ω be a smoothn− 1-form on M with compact support. then∫

∂M
ω =

∫
M
dω

Example 2.0.2. Let M = [0, 1] with the canonical orientation. Then
∂M = +{1} − {0} . Let ω = f : M → R be a smooth function. Then∫
∂M f = f(1) − f(0). On the other hand dω = df = f ′(x)dx . Thus,
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2∫
M dω =

∫ 1
0 f
′(x)dx . Hence, in this case Stokes’s formula

∫
∂M ω =

∫
M dω

reduces to f(1)− f(0) =
∫ 1
0 f
′(x)dx which is the Fundamental Theorem of

Calculus.

Example 2.0.3. Let ω = xdy−ydx
2 . Then dω = dx∧dy . Hence, by Stokes’s

formula for any compact domain D with smooth boundary in R2 we have∫
∂D

xdy − ydx
2

=

∫
D
dx ∧ dy = Area (D)

In particular, for D = {x2 + y2 6 1} this gives
∫
∂D ω = Area (D) = π .

Computing
∫
∂D ω using the parameterization ϕ(t) = (cos t, sin t) we find

that
∫
∂D ω =

∫
[0,2π) ϕ

∗ω =
∫ 1
0
dt
2 = π

Corollary 2.0.4. Let ω be exact n-form on a compact oriented manifold
M of dimension n. Then

∫
M ω = 0.

Corollary 2.0.5. Let ω be a closed n − 1-form on a compact oriented
manifold M of dimension n. Then

∫
∂M ω = 0.

Corollary 2.0.6. Let Mn be an oriented manifold. Let ω be a closed k -
form on M . Let S ⊂M be a compact oriented submanifold on M without
a boundary. Suppose

∫
S ω 6= 0. Then

(1) ω is not exact on M and ω|S is not exact on S .
(2) S does not bound a compact oriented submanifold Nk+1 ⊂M .

Example 2.0.7. Let M = Rn\{0}, S = Sn−1 = {x21 + . . . x2n = 1} , ω =∑
i(−1)i−1xidx

1∧...∧d̂xi∧...∧dxn
|x|n . Then

∫
Sn−1 ω 6= 0 and dω = 0. Therefore, the

previous corollary applies. Hence ω is not exact on Rn\{0} and Sn−1 does
not bound a compact oriented submanifold in Rn\{0} .

Let Mn be a compact oriented manifold without boundary. Observe
that every n-form on M is closed for dimension reasons. Consider the map
I : Ωn(M) → R given by I(ω) =

∫
M ω . This map is obviously linear. By

Corollary 2.0.4, exact forms line in the kernel of I . Therefore, I induces a
liner map I∗ : Hn

DR(M) → R . Note that for any orientation form ω on M
we have that I(ω) > 0. therefore, I (and hence I∗ ) is onto.

Theorem 2.0.8. Let Mn be a compact oriented manifold without boundary.
Then I∗ : Hn

DR(M)→ R is an isomorphism.

We will prove this theorem later for general M . Let’s show that it holds
for M = S1 . We only need to check that ker I∗ = 0. Let ω be 1-form on
S1 such that I(ω) =

∫
S1 ω = 0. We need to show that ω is exact.

Recall that S1 = R/Z and we have a natural projection map π : R→ S1
given by π(t) = (cos t, sin t) which gives a diffeomorphism onto S1\{point}
when restricted to any interval (a, a+2π). Therefore

∫ a+2π
a π∗ω =

∫
S1 ω = 0

for any a ∈ R . We have π∗ω = u(t)dt for some smooth function u(t) on R .
Define f : R → R by the formula, f(x) =

∫ x
0 u(t)dt . Then df = π∗ω and
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by above f(a + 2π) − f(a) =
∫ a+2π
a u(t)dt = 0 for any real a . Thus, f is

2π -periodic. Therefore it induces a smooth function f̄ : S1 → R such that
f̄ ◦ π = f .

By construction df̄ = ω . � .

3. Poincare lemma

Theorem 3.0.1. Let Mn be a smooth manifold. Let π : M × R → M be
the canonical projection and let s : M → M × R be the zero section given
by s(p) = (p, 0). Then the induced maps s∗ : H∗(M × R) → H∗(M) and
π∗ : H∗(M) → H∗(M × R) are inverse to each other. In particular, both
are isomorphisms.

Proof. Since π◦s = idM we obviously have that s∗◦π∗ = idH∗(M) . We need
to show that s∗ ◦ π∗ = idH∗(M×R) We will construct a homotopy operator

K : Ω∗(M × R)→ Ω∗−1(M × R) satisfying

(3.0.1) ω − (π∗ ◦ s∗)ω = (−1)|ω|−1(dK −Kd)ω

Let us first deal with the special case when M = U is an open subset in
Rn . Let us define the operator K as follows. Let ω be a k -form on U ×R .
We can uniquely write it as

ω =
∑

I=(i1<...<ik)

aI(x, t)dx
I +

∑
J=(j1<...<jk−1)

bJ(x, t)dxJ ∧ dt

Define K(ω) to be

K(ω) =
∑

J=(j1<...<jk−1)

(

∫ t

0
bJ(x, s)ds)dxJ

we claim that K satisfies (3.0.1). By linearity it’s enough to check it for
forms of the form a(x, t)dxI and b(x, t)dxJ ∧ dt .

Case 1. Let ω = a(x, t)dxI . Then π∗ ◦ s∗(ω) = a(x, 0)dxI and hence

ω − π∗ ◦ s∗(ω) = (a(x, t)− a(x, 0))dxI

By definition of K , K(ω) = 0. Also, dω = da∧ dxI =
∑

i
∂a(x,t)
∂xi

dxi ∧ dxI +
∂a(x,t)
∂t dt ∧ dxI =

∑
i
∂a(x,t)
∂xi

dxi ∧ dxI + (−1)k ∂a(x,t)∂t dxI ∧ dt . Therefore

Kdω = (−1)k(

∫ t

0

∂a(x, s)

∂s
ds)dxI = (−1)k(a(x, t)− a(x, 0))dxI

and

(−1)k−1(dK −Kd)ω = (−1)k−1(−Kd)ω = (a(x, t)− a(x, 0))dxI

which verifies (3.0.1).
Case 2. Now suppose ω = b(x, t)dxJ ∧ dt . Then s∗(ω) = 0 and hence

π∗ ◦ s∗(ω) = 0. Therefore

ω − π∗ ◦ s∗(ω) = ω = b(x, t)dxJ ∧ dt
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Next, Kω = (
∫ t
0 b(x, s)ds)dx

J and

dKω = b(x, t)dt ∧ dxJ +
∑
i

∂

∂xi

∫ t

0
(b(x, s)ds)dxi ∧ dxI =

= (−1)k−1b(x, t)dxJ ∧ dt+
∑
i

(

∫ s

0

∂b(x, s)

∂xi
ds)dxi ∧ dxI

On the other hand,

dω =
∑
i

∂b(x, t)

∂xi
dxi ∧ dxI ∧ dt

and

Kdω =
∑
i

(

∫ t

0

∂b(x, s)

∂xi
ds)dxi ∧ dxI

Therefore,
dKω −Kdω = (−1)k−1b(x, t)dxJ ∧ dt

which again verifies (3.0.1).
Thus, we have proved that (3.0.1) holds for any k -form on M ×R when

M = U which is an open subset in Rn . For a general M we can cover it by
local coordinate charts xα : Uα → Vα and construct a subordinate partition
of unity {ϕi}∞i=1 . Then any ω ∈ Ω∗(M) can be written as ω =

∑
i ωi where

ωi = ϕiω . then supp ϕiωi is contained in Ui and we already know how to
define K for each ωi because Ui is diffeomorphic to an open subset of Rn .
We can now define K by linearly extending it linearly:

K(ω) :
def
=

∑
K(ωi)

It’s immediate to check that K still satisfies (3.0.1).
Now, let ω be any closed form on M , i.e dω = 0. then (3.0.1) gives that

ω − (π∗ ◦ s∗)ω = (−1)|ω|−1(dK −Kd)ω = (−1)|ω|−1(dK)ω + 0

which means that ω − (π∗ ◦ s∗)ω is exact and therefore [ω] = [(π∗ ◦ s∗)ω] ∈
H∗(M × R). �
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