1. VOLUME FORMS ON RIEMANNIAN MANIFOLDS

Let (M^n, g) be a smooth oriented manifold of dimension n with a Riemannian metric g. Let $\omega = d \operatorname{vol}_M$ be the volume form on M. Recall that it is defined as follows. For a point $p \in M$ let e_1, \ldots, e_n be a positive orthonormal basis of $T_p M$. Then $\omega_p = e^1 \wedge \ldots \wedge e^n$. Note that this form is well-defined because if $\tilde{e}_1, \ldots, \tilde{e}_n$ is another positive orthonormal basis of $T_p M$ then $\omega_p = e^1 \wedge \ldots \wedge e^n = \det A \cdot \tilde{e}_1 \wedge \ldots \wedge \tilde{e}_n$ where A is the transition matrix from e to \tilde{e} . Since both bases are orthonormal $A \in O(n)$ and hence $\det A = \pm 1$. Since both bases are positive $\det A > 0$ and hence $\det A = 1$ and therefore $e^1 \wedge \ldots \wedge e^n = \tilde{e}_1 \wedge \ldots \wedge \tilde{e}_n$.

Let x be local coordinate chart near p positively oriented with respect to the orientation on M. oriented. let $g_{ij}(x) = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^i})(x)$ Then in coordinates x the volume form can be written as

(1.0.1)
$$d\mathrm{vol}_M = \sqrt{\mathrm{det}(g_{ij})} dx^1 \wedge \ldots \wedge dx^n$$

This follows immediately from the following observation. Given vectors $v_1, \ldots, v_n \in T_p M$ and a positive orthorormal basis e_1, \ldots, e_n let A be the $n \times n$ matrix whose *i*-th column is given by the coordinates of v_i in the basis e. Then $|e^1 \wedge \ldots \wedge e^n| = |\det A| = \sqrt{\det(A^t A)}$. Applying this to $v_1, \ldots, v_n = \frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}$ gives (1.0.1). Note that since the volume form is by construction compatible with the

Note that since the volume form is by construction compatible with the orientation of M at every point we have that

$$\int_M d\mathrm{vol}_M > 0.$$

Now, suppose $S \subset N$ is a submanifold of codimension 1. Let N be a unit normal vector field on S. Consider S with the orientation induced by normal field N and the orientation on M. Let g_S be the induced Riemannian metric on S.

Then the volume form on S can be given by the formula

$$d\mathrm{vol}_S = i_N (d\mathrm{vol}_M)$$

i.e. for any $p \in S$ and any $v_1, \ldots, v_{n-1} \in T_pS$ we have

$$dvol_S(v_1, \dots, v_{n-1}) = (dvol_M)(N(p), v_1, \dots, v_{n-1})$$

2. Stokes's Theorem

Theorem 2.0.1 (Stokes' Theorem). Let M^n be an oriented *n*-dimensional manifold. let ω be a smooth n-1-form on M with compact support. then

$$\int_{\partial M} \omega = \int_M d\omega$$

Example 2.0.2. Let M = [0,1] with the canonical orientation. Then $\partial M = +\{1\} - \{0\}$. Let $\omega = f \colon M \to \mathbb{R}$ be a smooth function. Then $\int_{\partial M} f = f(1) - f(0)$. On the other hand $d\omega = df = f'(x)dx$. Thus,

 $\int_M d\omega = \int_0^1 f'(x) dx$. Hence, in this case Stokes's formula $\int_{\partial M} \omega = \int_M d\omega$ reduces to $f(1) - f(0) = \int_0^1 f'(x) dx$ which is the Fundamental Theorem of Calculus.

Example 2.0.3. Let $\omega = \frac{xdy-ydx}{2}$. Then $d\omega = dx \wedge dy$. Hence, by Stokes's formula for any compact domain D with smooth boundary in \mathbb{R}^2 we have

$$\int_{\partial D} \frac{x dy - y dx}{2} = \int_{D} dx \wedge dy = \text{Area} (D)$$

In particular, for $D = \{x^2 + y^2 \leq 1\}$ this gives $\int_{\partial D} \omega = \text{Area}(D) = \pi$.

Computing $\int_{\partial D} \omega$ using the parameterization $\varphi(t) = (\cos t, \sin t)$ we find that $\int_{\partial D} \omega = \int_{[0,2\pi)} \varphi^* \omega = \int_0^1 \frac{dt}{2} = \pi$

Corollary 2.0.4. Let ω be exact *n*-form on a compact oriented manifold M of dimension *n*. Then $\int_M \omega = 0$.

Corollary 2.0.5. Let ω be a closed n - 1-form on a compact oriented manifold M of dimension n. Then $\int_{\partial M} \omega = 0$.

Corollary 2.0.6. Let M^n be an oriented manifold. Let ω be a closed k-form on M. Let $S \subset M$ be a compact oriented submanifold on M without a boundary. Suppose $\int_S \omega \neq 0$. Then

- (1) ω is not exact on M and $\omega|_S$ is not exact on S.
- (2) S does not bound a compact oriented submanifold $N^{k+1} \subset M$.

Example 2.0.7. Let $M = \mathbb{R}^n \setminus \{0\}, S = \mathbb{S}^{n-1} = \{x_1^2 + \ldots x_n^2 = 1\}, \omega = \frac{\sum_i (-1)^{i-1} x_i dx^1 \wedge \ldots \wedge dx^n}{|x|^n}$. Then $\int_{S^{n-1}} \omega \neq 0$ and $d\omega = 0$. Therefore, the previous corollary applies. Hence ω is not exact on $\mathbb{R}^n \setminus \{0\}$ and \mathbb{S}^{n-1} does not bound a compact oriented submanifold in $\mathbb{R}^n \setminus \{0\}$.

Let M^n be a compact oriented manifold without boundary. Observe that every *n*-form on M is closed for dimension reasons. Consider the map $I: \Omega^n(M) \to R$ given by $I(\omega) = \int_M \omega$. This map is obviously linear. By Corollary 2.0.4, exact forms line in the kernel of I. Therefore, I induces a liner map $I_*: H^n_{DR}(M) \to \mathbb{R}$. Note that for any orientation form ω on Mwe have that $I(\omega) > 0$. therefore, I (and hence I_*) is onto.

Theorem 2.0.8. Let M^n be a compact oriented manifold without boundary. Then $I_*: H^n_{DR}(M) \to \mathbb{R}$ is an isomorphism.

We will prove this theorem later for general M. Let's show that it holds for $M = S^1$. We only need to check that ker $I^* = 0$. Let ω be 1-form on \mathbb{S}^1 such that $I(\omega) = \int_{\mathbb{S}^1} \omega = 0$. We need to show that ω is exact.

Recall that $S^1 = \mathbb{R}/\mathbb{Z}$ and we have a natural projection map $\pi \colon \mathbb{R} \to \mathbb{S}^1$ given by $\pi(t) = (\cos t, \sin t)$ which gives a diffeomorphism onto $S^1 \setminus \{point\}$ when restricted to any interval $(a, a+2\pi)$. Therefore $\int_a^{a+2\pi} \pi^* \omega = \int_{\mathbb{S}^1} \omega = 0$ for any $a \in \mathbb{R}$. We have $\pi^* \omega = u(t)dt$ for some smooth function u(t) on \mathbb{R} . Define $f \colon \mathbb{R} \to \mathbb{R}$ by the formula, $f(x) = \int_0^x u(t)dt$. Then $df = \pi^* \omega$ and by above $f(a + 2\pi) - f(a) = \int_a^{a+2\pi} u(t)dt = 0$ for any real a. Thus, f is 2π -periodic. Therefore it induces a smooth function $\overline{f} \colon \mathbb{S}^1 \to \mathbb{R}$ such that $\overline{f} \circ \pi = f$.

By construction $d\bar{f} = \omega$. \Box .

3. POINCARE LEMMA

Theorem 3.0.1. Let M^n be a smooth manifold. Let $\pi: M \times \mathbb{R} \to M$ be the canonical projection and let $s: M \to M \times \mathbb{R}$ be the zero section given by s(p) = (p, 0). Then the induced maps $s^*: H^*(M \times \mathbb{R}) \to H^*(M)$ and $\pi^*: H^*(M) \to H^*(M \times \mathbb{R})$ are inverse to each other. In particular, both are isomorphisms.

Proof. Since $\pi \circ s = \operatorname{id}_M$ we obviously have that $s^* \circ \pi^* = \operatorname{id}_{H^*(M)}$. We need to show that $s^* \circ \pi^* = \operatorname{id}_{H^*(M \times \mathbb{R})}$ We will construct a homotopy operator $K \colon \Omega^*(M \times \mathbb{R}) \to \Omega^{*-1}(M \times \mathbb{R})$ satisfying

(3.0.1)
$$\omega - (\pi^* \circ \mathfrak{s}^*)\omega = (-1)^{|\omega|-1} (dK - Kd)\omega$$

Let us first deal with the special case when M = U is an open subset in \mathbb{R}^n . Let us define the operator K as follows. Let ω be a k-form on $U \times \mathbb{R}$. We can uniquely write it as

$$\omega = \sum_{I = (i_1 < \dots < i_k)} a_I(x, t) dx^I + \sum_{J = (j_1 < \dots < j_{k-1})} b_J(x, t) dx^J \wedge dt$$

Define $K(\omega)$ to be

$$K(\omega) = \sum_{J = (j_1 < \dots < j_{k-1})} (\int_0^t b_J(x, s) ds) dx^J$$

we claim that K satisfies (3.0.1). By linearity it's enough to check it for forms of the form $a(x,t)dx^{I}$ and $b(x,t)dx^{J} \wedge dt$.

Case 1. Let $\omega = a(x,t)dx^I$. Then $\pi^* \circ s^*(\omega) = a(x,0)dx^I$ and hence $\omega - \pi^* \circ s^*(\omega) = (a(x,t) - a(x,0))dx^I$

By definition of K, $K(\omega) = 0$. Also, $d\omega = da \wedge dx^I = \sum_i \frac{\partial a(x,t)}{\partial x^i} dx^i \wedge dx^I + \frac{\partial a(x,t)}{\partial t} dt \wedge dx^I = \sum_i \frac{\partial a(x,t)}{\partial x^i} dx^i \wedge dx^I + (-1)^k \frac{\partial a(x,t)}{\partial t} dx^I \wedge dt$. Therefore

$$Kd\omega = (-1)^k \left(\int_0^t \frac{\partial a(x,s)}{\partial s} ds\right) dx^I = (-1)^k (a(x,t) - a(x,0)) dx^I$$

and

$$(-1)^{k-1}(dK - Kd)\omega = (-1)^{k-1}(-Kd)\omega = (a(x,t) - a(x,0))dx^{I}$$

which verifies (3.0.1).

Case 2. Now suppose $\omega = b(x,t)dx^J \wedge dt$. Then $s^*(\omega) = 0$ and hence $\pi^* \circ s^*(\omega) = 0$. Therefore

$$\omega - \pi^* \circ s^*(\omega) = \omega = b(x, t) dx^J \wedge dt$$

Next, $K\omega = (\int_0^t b(x,s)ds)dx^J$ and

$$dK\omega = b(x,t)dt \wedge dx^{J} + \sum_{i} \frac{\partial}{\partial x^{i}} \int_{0}^{t} (b(x,s)ds)dx^{i} \wedge dx^{I} =$$
$$= (-1)^{k-1}b(x,t)dx^{J} \wedge dt + \sum_{i} (\int_{0}^{s} \frac{\partial b(x,s)}{\partial x^{i}}ds)dx^{i} \wedge dx^{I}$$

On the other hand,

$$d\omega = \sum_{i} \frac{\partial b(x,t)}{\partial x^{i}} dx^{i} \wedge dx^{I} \wedge dt$$

and

$$Kd\omega = \sum_{i} (\int_{0}^{t} \frac{\partial b(x,s)}{\partial x^{i}} ds) dx^{i} \wedge dx^{I}$$

Therefore,

$$dK\omega - Kd\omega = (-1)^{k-1}b(x,t)dx^J \wedge dt$$

which again verifies (3.0.1).

Thus, we have proved that (3.0.1) holds for any k-form on $M \times \mathbb{R}$ when M = U which is an open subset in \mathbb{R}^n . For a general M we can cover it by local coordinate charts $x_{\alpha} \colon U_{\alpha} \to V_{\alpha}$ and construct a subordinate partition of unity $\{\varphi_i\}_{i=1}^{\infty}$. Then any $\omega \in \Omega^*(M)$ can be written as $\omega = \sum_i \omega_i$ where $\omega_i = \varphi_i \omega$. then supp $\varphi_i \omega_i$ is contained in U_i and we already know how to define K for each ω_i because U_i is diffeomorphic to an open subset of \mathbb{R}^n . We can now define K by linearly extending it linearly:

$$K(\omega) :\stackrel{def}{=} \sum K(\omega_i)$$

It's immediate to check that K still satisfies (3.0.1).

Now, let ω be any closed form on M, i.e $d\omega = 0$. then (3.0.1) gives that

$$\omega - (\pi^* \circ \mathfrak{s}^*)\omega = (-1)^{|\omega|-1} (dK - Kd)\omega = (-1)^{|\omega|-1} (dK)\omega + 0$$

which means that $\omega - (\pi^* \circ \mathfrak{s}^*)\omega$ is exact and therefore $[\omega] = [(\pi^* \circ \mathfrak{s}^*)\omega] \in H^*(M \times \mathbb{R})$.

4