1. Homotopy invariance of cohomology

Theorem 1.0.1 (Poincare lemma). Let M^n be a smooth manifold. Let $\pi: M \times \mathbb{R} \to M$ be the canonical projection. Let $t \in \mathbb{R}$ and let $s_t: M \to M \times \mathbb{R}$ be given by $s_t(p) = (p, t)$. Then the induced maps $s_t^*: H^*(M \times \mathbb{R}) \to H^*(M)$ and $\pi^*: H^*(M) \to H^*(M \times \mathbb{R})$ are inverse to each other. In particular, both are isomorphisms.

Corollary 1.0.2. Under the assumptions of Theorem 1.0.1 for any $t_0, t_1 \in \mathbb{R}$ it holds that

$$s_{t_0}^* = s_{t_1}^* \colon H^*(M \times \mathbb{R}) \to H^*(M).$$

Recall that continuous maps $f_0, f_1: X \to Y$ are called *homotopic* if there exists a continuous map $F: X \times [0,1] \to Y$ such that $F(x,0) = f_0(x), F(x,1) = f_1(x)$ for any $x \in X$. Homotopy is an equivalence relation on continuous maps from X to Y. We will denote it by $f_0 \sim f_1$.

Theorem 1.0.3 (Homotopy invariance of cohomology). Let $f_0, f_1: M \to N$ be homotopic smooth maps between two manifolds (possibly with boundary). Then $f_0^* = f_1^*: H^*(N) \to H^*(M)$

Proof. let $F: M \times [0,1] \to N$ be a homotopy from f_0 to f_1 . let's extend it to a continuous map $\tilde{F}: M \times \mathbb{R} \to N$ in an obvious way by setting $\tilde{F}(x,t) = f_0(x)$ for $t \leq 0$ and $\tilde{F}(x,1) = f_1(x)$ for $t \geq 1$. Note that \tilde{F} is smooth on $M \times \mathbb{R} \setminus [0,1]$. Therefore by a smooth approximation theorem we can find a smooth map $\bar{F}: M \times \mathbb{R} \to N$ such that $\bar{F} = \tilde{F}$ on $M \times \mathbb{R} \setminus [-1,2]$.

By construction we have that $\overline{F} \circ s_{-3} \equiv f_0$ and $\overline{F} \circ s_3 \equiv f_1$. By Corollary 1.0.2 it holds that $s_3^* = s_{-3}^*$: $H^*(M \times \mathbb{R}) \to H^*(M)$. Therefore $f_0^* = s_{-3}^* \circ \overline{F}^* = s_3^* \circ \overline{F}^* = f_1^*$.

A map $f: X \to Y$ is called a *homotopy equivalence* if there exists $g: Y \to X$ such that $f \circ g \sim id_Y$ and $g \circ f \sim id_X$.

Example 1.0.4. A homeomorphism is a homotopy equivalence.

Definition 1.0.5. Let $A \subset X$. A map $r: X \to A$ is called a *retraction* if $r|_A = id_A$. A retraction $r: X \to A$ is called a *deformation retraction* if $i \circ r \sim id_X$ where $i: A \to X$ is the canonical inclusion. A deformation retraction $r: X \to A$ is called a *strong deformation retraction* if the homotopy F from $r: X \to X$ to id_X can be chosen to be identity on A i.e. it can be chosen to satisfy F(x,t) = x for any $x \in A, t \in [0,1]$.

It's obvious that a deformation retraction is a homotopy equivalence.

Example 1.0.6. The map $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$ given by $f(x) = \frac{x}{|x|}$ is a strong deformation retraction.

Homotopy invariance of De Rham cohomology immediately implies

Corollary 1.0.7. Let $f: M \to N$ be a homotopy equivalence. Then $f^*: H^*(N) \to H^*(M)$ is an isomorphism.

Corollary 1.0.8. Let M^n, N^m be closed orientable manifolds where $m \neq n$. Then M is not homeomorphic to N.

Proof. Let n < m. Then $H^m(M) = 0$ for dimension reasons since any m-form on M is identically 0. But $H^m(N) \neq 0$ since $\int : H^m(N) \to \mathbb{R}$ is a non-zero homomorphism (we will later see that it's actually an isomorphism).

Definition 1.0.9. A space X is called *contractible* if X is homotopy equivalent to a point.

Corollary 1.0.10. Let M be a contractible manifold, possibly with boundary. Then

$$H^*(M) \cong \begin{cases} \mathbb{R} & \text{if } * = 0\\ 0 & \text{if } * > 0 \end{cases}$$

Definition 1.0.11. A subset $A \subset \mathbb{R}^n$ is called *star-shaped* if there exists $p \in A$ such that for any $x \in A$ the line segment [px] is contained in A. In the is cases we will also say that A is star-shaped with respect to p.

Corollary 1.0.12. Let $A \subset \mathbb{R}^n$ be star-shaped with respect to $p \in A$. Then p is a strong deformation retract of A. In particular, A is contractible and hence has the De Rahm cohomology of a point.

Let $F: A \times [0,1] \to \mathbb{R}^n$ be given by F(x,t) = (1-t)x + tp. Since A is star-shaped with respect to p, we have that $F(x,t) \in A$ for any x,t and hence F is actually a map from $A \times [0,1]$ to A. By construction F(x,0) = xand F(x,1) = p for any $x \in A$.

Example 1.0.13. The following subsets of \mathbb{R}^n are star-shaped with respect to 0. Hence the are contractible and have cohomology of a point.

- $A = \mathbb{R}^n$;
- $A = H^n;$
- A = B(0, 1).

 $\mathbf{2}$