(1) Prove that the set of finite subsets of N is countable.
Solution

Let Sy be the set of subsets of N consisting of k£ elements. Then
S = U2, S Let fi: S — N* be constructed as follows. Given
a set of k£ natural numbers A = {z; < 22 < ... < 1} define
fx(A) = (x1,22,...,2%). By construction, f is 1-1. Thus |Si| <
IN¥| = |N|. By the theorem from class, |S| < |N| also. It’s obvious
that |S| > |S1| = |N. By Shroeder-Berenstein Theorem this implies
that |S| = |N|.
(2) Let S be an infinite set such that |S| > |N|. Let " C S be countable.
(a) Prove that S\T is infinite.
(b) Prove that |S| = [S\T.
Hint: Construct 77 C S\T such that 7" is countable and use
that |TUT’| = |T'| to construct an 1-1 and onto map from S to
S\T.
(c¢) Find the cardinality of the set of transcendental numbers.
Solution
(a) Suppose A = S\T is finite. Then S = AUT. Since |A| < |N|
and |T'| < |N| this implies that |S| < |N|. This is a contradiction
as we are given that |S| > |NJ.
(b) Since S\T is infinite by part a), we can construct a countable
subset 77 C S\T. Let A= S\(TUT").
Note that T’N7T" is countable since both 7" and T are countable.
Thus, |T'| = IN| = |T NT'|. Therefore we can construct a 1-1
and onto map f: TUT — T".
Finally, define F: S = TUT'UA — S\T = T' U A by the

formula

Fls) = f(s)ifzeeTUT
(s) = sifse A

By construction, F'is 1-1 and onto.

(c) Let S = R and T be the set of all algebraic numbers. Then
T is countable and |S| = |R| > |N|. The set of transcendental
numbers is S\T. Applying b) we conclude that |S\T'| = |S| =
IR|.

(3) Let S be the set of sequences ¢, g2, g3, - . . where g; is real for every i
and such that for every sequence there exists n € N such that ¢; =0
for all ¢ > n.
Find the cardinality of S.

Solution

Let Sy, be the set of sequences of the form ¢1,...,¢,,0,0,.... Then

S =05, Sy,. Let fr,: S, = R™ be given by f(q1,...,4n,0,0,...) =

(q1,.-.,qn). Clearly, f, is 1-1 and hence, |S,| < |R| for any n. It’s
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also obvious that |S,| > |R| for any n and therefore |S,| = |R| for
every n. By a theorem from class this implies that |S| = |R|.
Let P(z) be a cubic polynomial with rational coefficients. Suppose
it has a complex root of the form a + bi where both a and b are
rational.

Prove that P(x) has a rational root.

Solution

First, we can assume that b # 0 since there is nothing to prove
otherwise.

Let Q(z) = (x—a—bi)(z—a+bi) = (x—a)?+b* = 2% —2ra+a>+b>
so Q(x) has rational coefficients. Divide P by @ with a remainder.
Then P(z) = A(z)Q(x) + R(z) where both A(x) and R(x) have
rational coefficients, A(z) has degree 1 and R(z) has degree at most
1.

Suppose R(z) has degree exactly 1. That is R(z) = a1z + ap
where a; are rational and a; # 0. Plugging in x = a + bi into
P(z) = A(z)Q(z)+ R(z) we get 0 = 0+ R(a+bi) or 0 = aj(a+bi) —
ag,a + bi = Z—? This is a contradiction since Z—? is real and a + b7 is
not.

Therefore, R(x) has degree 0, i.e R(x) = ag. Again plugging in
x = a+ bi into P(z) = A(z)Q(x) + R(z) we get 0 = 0 + ap which
means that R(z) = 0. Therefore P(z) = A(x)Q(x).

Lastly, A(x) is a degree 1 polynomial with rational coefficients. It
obviously has a rational root which is also a root of P(x).



