(1) Prove that the set of finite subsets of \mathbb{N} is countable.

Solution

Let S_k be the set of subsets of N consisting of k elements. Then $S = \bigcup_{k=1}^{\infty} S_k$. Let $f_k \colon S_k \to \mathbb{N}^k$ be constructed as follows. Given a set of k natural numbers $A = \{x_1 < x_2 < \ldots < x_k\}$ define $f_k(A) = (x_1, x_2, \ldots, x_k)$. By construction, f_k is 1-1. Thus $|S_k| \leq |\mathbb{N}^k| = |\mathbb{N}|$. By the theorem from class, $|S| \leq |\mathbb{N}|$ also. It's obvious that $|S| \geq |S_1| = |\mathbb{N}$. By Shroeder-Berenstein Theorem this implies that $|S| = |\mathbb{N}|$.

- (2) Let S be an infinite set such that |S| > |N|. Let T ⊂ S be countable.
 (a) Prove that S\T is infinite.
 - (b) Prove that $|S| = |S \setminus T|$. *Hint:* Construct $T' \subset S \setminus T$ such that T' is countable and use that $|T \cup T'| = |T|$ to construct an 1-1 and onto map from S to $S \setminus T$.
 - (c) Find the cardinality of the set of transcendental numbers.

Solution

- (a) Suppose $A = S \setminus T$ is finite. Then $S = A \cup T$. Since $|A| \leq |\mathbb{N}|$ and $|T| \leq |\mathbb{N}|$ this implies that $|S| \leq |\mathbb{N}|$. This is a contradiction as we are given that $|S| > |\mathbb{N}|$.
- (b) Since $S \setminus T$ is infinite by part a), we can construct a countable subset $T' \subset S \setminus T$. Let $A = S \setminus (T \cup T')$. Note that $T \cap T'$ is countable since both T and T' are countable. Thus, $|T'| = |\mathbb{N}| = |T \cap T'|$. Therefore we can construct a 1-1 and onto map $f: T \cup T' \to T'$.

Finally, define $F\colon S=T\cup T'\cup A\to S\backslash T=T'\cup A$ by the formula

$$F(s) = \begin{cases} f(s) \text{ if } x \in T \cup T' \\ s \text{ if } s \in A \end{cases}$$

By construction, F is 1-1 and onto.

- (c) Let $S = \mathbb{R}$ and T be the set of all algebraic numbers. Then T is countable and $|S| = |\mathbb{R}| > |\mathbb{N}|$. The set of transcendental numbers is $S \setminus T$. Applying b) we conclude that $|S \setminus T| = |S| = |\mathbb{R}|$.
- (3) Let S be the set of sequences q_1, q_2, q_3, \ldots where q_i is real for every i and such that for every sequence there exists $n \in \mathbb{N}$ such that $q_i = 0$ for all $i \geq n$.

Find the cardinality of S.

Solution

Let S_n be the set of sequences of the form $q_1, \ldots, q_n, 0, 0, \ldots$. Then $S = \bigcup_{n=1}^{\infty} S_n$. Let $f_n: S_n \to \mathbb{R}^n$ be given by $f(q_1, \ldots, q_n, 0, 0, \ldots) = (q_1, \ldots, q_n)$. Clearly, f_n is 1-1 and hence, $|S_n| \leq |\mathbb{R}|$ for any n. It's

also obvious that $|S_n| \ge |\mathbb{R}|$ for any *n* and therefore $|S_n| = |\mathbb{R}|$ for every *n*. By a theorem from class this implies that $|S| = |\mathbb{R}|$.

(4) Let P(x) be a cubic polynomial with rational coefficients. Suppose it has a complex root of the form a + bi where both a and b are rational.

Prove that P(x) has a rational root.

Solution

First, we can assume that $b \neq 0$ since there is nothing to prove otherwise.

Let $Q(x) = (x-a-bi)(x-a+bi) = (x-a)^2+b^2 = x^2-2xa+a^2+b^2$ so Q(x) has rational coefficients. Divide P by Q with a remainder. Then P(x) = A(x)Q(x) + R(x) where both A(x) and R(x) have rational coefficients, A(x) has degree 1 and R(x) has degree at most 1.

Suppose R(x) has degree exactly 1. That is $R(x) = a_1x + a_0$ where a_i are rational and $a_1 \neq 0$. Plugging in x = a + bi into P(x) = A(x)Q(x) + R(x) we get 0 = 0 + R(a+bi) or $0 = a_1(a+bi) - a_0, a + bi = \frac{a_0}{a_1}$. This is a contradiction since $\frac{a_0}{a_1}$ is real and a + bi is not.

Therefore, R(x) has degree 0, i.e $R(x) = a_0$. Again plugging in x = a + bi into P(x) = A(x)Q(x) + R(x) we get $0 = 0 + a_0$ which means that R(x) = 0. Therefore P(x) = A(x)Q(x).

Lastly, A(x) is a degree 1 polynomial with rational coefficients. It obviously has a rational root which is also a root of P(x).