
(1) Prove that the set of finite subsets of N is countable.

Solution

Let Sk be the set of subsets of N consisting of k elements. Then
S = ∪∞k=1Sk. Let fk : Sk → Nk be constructed as follows. Given
a set of k natural numbers A = {x1 < x2 < . . . < xk} define
fk(A) = (x1, x2, . . . , xk). By construction, fk is 1-1. Thus |Sk| ≤
|Nk| = |N|. By the theorem from class, |S| ≤ |N| also. It’s obvious
that |S| ≥ |S1| = |N. By Shroeder-Berenstein Theorem this implies
that |S| = |N|.

(2) Let S be an infinite set such that |S| > |N|. Let T ⊂ S be countable.
(a) Prove that S\T is infinite.
(b) Prove that |S| = |S\T |.

Hint: Construct T ′ ⊂ S\T such that T ′ is countable and use
that |T ∪ T ′| = |T | to construct an 1-1 and onto map from S to
S\T .

(c) Find the cardinality of the set of transcendental numbers.

Solution

(a) Suppose A = S\T is finite. Then S = A ∪ T . Since |A| ≤ |N|
and |T | ≤ |N| this implies that |S| ≤ |N|. This is a contradiction
as we are given that |S| > |N|.

(b) Since S\T is infinite by part a), we can construct a countable
subset T ′ ⊂ S\T . Let A = S\(T ∪ T ′).
Note that T ∩T ′ is countable since both T and T ′ are countable.
Thus, |T ′| = |N| = |T ∩ T ′|. Therefore we can construct a 1-1
and onto map f : T ∪ T ′ → T ′.
Finally, define F : S = T ∪ T ′ ∪ A → S\T = T ′ ∪ A by the
formula

F (s) =

{
f(s) if x ∈ T ∪ T ′

s if s ∈ A

By construction, F is 1-1 and onto.
(c) Let S = R and T be the set of all algebraic numbers. Then

T is countable and |S| = |R| > |N|. The set of transcendental
numbers is S\T . Applying b) we conclude that |S\T | = |S| =
|R|.

(3) Let S be the set of sequences q1, q2, q3, . . . where qi is real for every i
and such that for every sequence there exists n ∈ N such that qi = 0
for all i ≥ n.

Find the cardinality of S.

Solution

Let Sn be the set of sequences of the form q1, . . . , qn, 0, 0, . . .. Then
S = ∪∞n=1Sn. Let fn : Sn → Rn be given by f(q1, . . . , qn, 0, 0, . . .) =
(q1, . . . , qn). Clearly, fn is 1-1 and hence, |Sn| ≤ |R| for any n. It’s
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also obvious that |Sn| ≥ |R| for any n and therefore |Sn| = |R| for
every n. By a theorem from class this implies that |S| = |R|.

(4) Let P (x) be a cubic polynomial with rational coefficients. Suppose
it has a complex root of the form a + bi where both a and b are
rational.

Prove that P (x) has a rational root.

Solution

First, we can assume that b 6= 0 since there is nothing to prove
otherwise.

Let Q(x) = (x−a−bi)(x−a+bi) = (x−a)2+b2 = x2−2xa+a2+b2

so Q(x) has rational coefficients. Divide P by Q with a remainder.
Then P (x) = A(x)Q(x) + R(x) where both A(x) and R(x) have
rational coefficients, A(x) has degree 1 and R(x) has degree at most
1.

Suppose R(x) has degree exactly 1. That is R(x) = a1x + a0
where ai are rational and a1 6= 0. Plugging in x = a + bi into
P (x) = A(x)Q(x)+R(x) we get 0 = 0+R(a+bi) or 0 = a1(a+bi)−
a0, a + bi = a0

a1
. This is a contradiction since a0

a1
is real and a + bi is

not.
Therefore, R(x) has degree 0, i.e R(x) = a0. Again plugging in

x = a + bi into P (x) = A(x)Q(x) + R(x) we get 0 = 0 + a0 which
means that R(x) = 0. Therefore P (x) = A(x)Q(x).

Lastly, A(x) is a degree 1 polynomial with rational coefficients. It
obviously has a rational root which is also a root of P (x).


