Practice Final 2

1. Using induction prove that

$$1^{2} + 3^{2} + \ldots + (2n+1)^{2} = \frac{(n+1)(2n+1)(2n+3)}{3}$$

- 2. Let a, b, c be natural numbers.
 - (a) Show that the equation ax + by = c has a solution if and only if (a, b)|c.
 - (b) Find all integer solutions of 6x + 15y = 9.
- 3. Find the last digit of the sum

$$2(1+3+3^2+3^3+\ldots+3^{309})$$

- 4. Let S be infinite and $A \subset S$ be finite. Prove that $|S| = |S \setminus A|$.
- 5. Let S = [0,1] and T = [0,2). Let $f \colon S \to T$ be given by f(x) = x and $g \colon T \to S$ be given by g(x) = x/2.
 - (a) Find S_S, S_T, S_∞ ;
 - (b) give an explicit formula for a 1-1 and onto map $h \colon S \to T$ coming from f and g using the proof of the Schroeder-Berenstein theorem.
- 6. Let n = 2p where p is an odd prime. Find the remainder when $\phi(n)!$ is divided by n. Here $\phi(n)$ is the Euler function of n.
- 7. Prove that $q_1\sqrt{3} + q_2\sqrt{5} \neq q_1'\sqrt{3} + q_2'\sqrt{5}$ for any rational q_1, q_2, q_1', q_2' unless $q_1 = q_1', q_2 = q_2'$.
- 8. Let a be a root of $x^5 6x^3 + 2x^2 + 5x 1 = 0$. Construct a polynomial with integer coefficients which has a^2 as a root.

Hint: separate even and odd powers.

9. Find all complex roots of $x^6 + 7x^3 - 8 = 0$.

Reminder: Real numbers are also complex numbers.

- 10. Represent $\sin(5\theta)$ as a polynomial in $\sin(\theta)$.
- 11. Is $\frac{\sqrt[6]{5}-\sqrt{5}}{1+2\sqrt{7}}$ constructible? Justify your answer.
- 12. For each of the following answer "true" or "false". Justify your answer.

1

a) If $\frac{x}{y}$ is constructible then both x and y are constructible.

- b) If x > 0 is constructible then $\frac{1}{x}$ is constructible.
- c) There is an angle θ such that $\cos\theta$ is constructible but $\sin\theta$ is not constructible.
- d) $\sqrt[3]{\frac{10}{27}}$ is constructible.
- 13. Prove that the equation

$$(1+x^{19})^3 + (1+x^{19})^2 - 3 = 0$$

has no constructible solutions.