1. Setting k =1, we get 1 = W
Which we see is true as (1 —¢)> =1—2¢+¢* and ¢ # 1
Assume the statement is true for k =n »
e, 142¢+3¢° + ... +ng"~t = el
Then we have,

1429 +3¢2 + oo Fng" !+ (n 4 1)gn = DO gy gy

1=+ 1D)"+ 0"+ (1 -2+ ) (n+1)¢"  1—(n+2)¢""™" + (n+1)¢""
(1—q)? (1—q)?

QED

2.a. 45 = 9% 5. Since 9 and 5 are both less than 43, both occur as separate factors in
43! or 43! =43 % 42 %41 % ... x 9k ... xHx .. *x 1

Therefore 43! =0 (mod 45)

2.b. 32 =9 = —1 mod 10.
Thus, 321 = (-1)1%7 = —1 = 9 mod 10
i.e. 9 is the last digit of the number

3. Instead of p1 p2 we shall refer it to as n = p?¢®. Now any divisor of n will look like
p"q® where r < a,s < b. Thus, if any number had ged not 1 with n, then the ged which is
a divisor of n, should divide the chosen number. That is p"¢® divides the number where not
both r and s are 0.i.e either p divides the number or ¢ divides the number,(or both in which
case it is divisible by pq as they are coprime).

The number of multiples of p less than or equal to n is % = p®~1¢b, given by {px1, p*2, ...p*%}

Similarly. The number of multiples of ¢ less than or equal to n is % = p2¢®~!, given by

{gx1,q%2,. q*—}

Similarly. The number of multiples of pq less than or equal to n is pﬁq =p
{pq1,pg*2,..pgx -}

So the number of numbers which are divisible by p or q will be p*~1¢® 4+ p®¢®~!, but we have
counted the multiples of pg twice, so we subtract them once. i.e. p*~ 1qb + p“qb L poigh—t
So, ¢( )=n—@""'¢+p'¢ " —p* ")

_p q pa qb paqb 1 _'_pa 1qb—1

= (" —p"")N =)

a=1g*=1 given by

4. Let 21 = a+1b and 25 = ¢ 4 1d, where a, b, ¢, d are reals. Then,
a. (a —ib)(c —id) = (ac — bd) — i(ad + bc) = ac — bd + i(ab + bc) = (a + ib)(c + id)




b. |2122|2 = (2122>2122 = 21225122 = (le_l)(ZQZ_Q) = |Zl|2|22|2.
Since |z| is always a positive real, this implies |z1 25| = |21]|22]

5. Let z3 = t, then the equation turns to 0 = t* + 7t — 8 = (t — 1)(¢ + 8).
Case 1t —1=0, then 23 =t = 1. Obviously we see that z = 1 is a solution.
Thus 1 is a root of 23 — 1, thus,z® — 1 = (2 — 1)(22 + 2z + 1).
Solving the quadratic we get that z = # are also roots.
Case 2t + 8 = 0, setting —2s = z, equation becomes —8s%> +8 =0or s —1=0
z—g=1, #

This from case one we know imples =%

Thus all complex values for z are 1, %, —2,1+1iV3

6. We can give a bijection from the power set of Z to the set of functions {g : Z — {1,2}}
as follows. For any S C Z We define fg(t) = 1if t € S and fg(t) = 2 otherwise.
To see that this is a bijection, we define another function that takes functions to subsets of
Z, given by taking a function f to the set f~!(1) = {t € Z|f(t) = 1}.
It is easy to see that these processes are inverses of each other, proving a bijection.

f S — T, we define by

= if nz =1 for some n € N,

=0
= 575= if (2n+ 1)z = 2 for some n € N and n # 1
f(x) = x, otherwise

What we did was shifted the sequence % from n = 2 onward to right by 1, and added one at
the start

shifted the sequence %ﬂ to the right and fit 0 as the first term.

7.
f()
(3)
f()

8. a True (constructible numbers form a field)
b False (23 is not constructible)
c. False (it contains transcedental numbers)
d True (all rationals are constructible)
e. False (23 is not constructible)

9.a tan(m/30) is constructible if the angle /30 = 6° is constructible. Since 3° is con-
structible(Textbook theorem), 6° = 2 % 3° is constructible.

9.b v/8 = /2, therefore is constructible. v/1.3 is constructible(1.3 is constructible). And
sqrt3/5 is constructible, which implies, it square root /3/5 is constructible. Thus,y/3/5 +
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v/1.3 is constructible. And thus its inverse is constructible and thus ﬂ—W+ Yiw 1s con

structible.

100 N=21=3*7,0(N)=3-1)(7T—1)=12
ED =1 mod ¢(N)
5D =1 mod 12, 5D = 25 mod 12.
ie. D=5mod 12or D=5
RP = M mod N
As 19 = —2 mod 21,
19° = (—2)° = —32 = 10 mod 21
Thus, M =10



