
Solutions to selected problems from homework 1

(1) The Fibonacci sequence is the sequence of numbers F (0), F (1), . . .
defined by the following recurrence relations:
F (0) = 1, F (1) = 1, F (n) = F (n− 1) + F (n− 2) for all n > 1.
For example, the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, . . .
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Solution

We prove the formula by induction on n.
First let’s check that the formula holds for n = 0 and n = 1.
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Thus the formula holds for n = 0.
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Thus the formula also holds for n = 1.
Induction step. Suppose the formula holds for all k = 0, 1, . . . n

for some n ≥ 1. We need to show that

F (n + 1) =
1√
5

[(1 +
√

5

2

)n+2
−
(1−

√
5

2

)n+2]
Using that 1+

√
5

2 and 1−
√
5

2 satisfy the equation 1 + x = x2 we
compute

By the induction assumption
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(2) Using the method from class find the formula for the sum

13 + 23 + . . . + n3

Then prove the formula you’ve found by mathematical induction.

Solution
1
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We’ve proved in class that 1 + 2 + . . . + n = n(n+1)
2 and 12 + 22 +

. . . + n2 = n(n+1)(2n+1)
6 .

Let’s find an such that a1 + a2 + . . . + an = n4. We have n4 =
(a1 + . . .+an−1)+an = (n−1)4 +an and hence an = n4− (n−1)4 =
n4 − (n4 − 4n3 + 6n2 − 4n + 1) = 4n3 − 6n2 + 4n− 1.

Thus

n4 = (4·13−6·12+4·1−1)+(4·23−6·22+4·2−1)+. . .+(4·n3−6·n2+4·n−1) =

= 4(13 + 23 + . . . + n3)− 6(12 + 22 + . . . n2) + 4(1 + 2 + . . . + n)− n =

= 4(13 + 23 + . . . + n3)− 6 · n(n + 1)(2n + 1)

6
+ 4 · n(n + 1)

2
− n

Therefore,

4(13 + 23 + . . . + n3) = n4 + n(n + 1)(2n + 1)− 2n(n + 1) + n

13 + 23 + . . . + n3 =
n4 + n(n + 1)(2n + 1)− 2n(n + 1) + n

4
=
(n(n + 1)
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Now that we have found the formula we can also prove it by induc-
tion.

First check that it holds for n = 1: 13 = 1 = (1·22 )2. This verifies
the base of induction.

Induction step: Suppose 13 + 23 + . . . + n3 =
(n(n+1)

2

)2
for some

n ≥ 1.

We need to show that 13 +23 + . . .+n3 +(n+1)3 =
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We have 13 + 23 + . . . + n3 + (n + 1)3 =
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(3) Find a mistake in the following ”proof”.
Claim. Any two natural numbers are equal.
We’ll prove the following statement by induction in n: Any two

natural numbers ≤ n are equal.
We prove it by induction in n.

a) The statement is trivially true for n = 1.
b) Suppose it’s true for n ≥ 1. Let a, b be two natural numbers
≤ n + 1. Then a − 1 ≤ n and b − 1 ≤ n. Therefore, by the
induction assumption

a− 1 = b− 1

Adding 1 to both sides of the above equality we get that a =
b. Thus the statement is true for n + 1. By the principle of
mathematical induction this means that it’s true for all natural
n. �.
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Solution

The mistake is in step b) in the implication that since a − 1 ≤
n, b − 1 ≤ n they must be equal by the induction assumption. The
induction assumption is only valid for natural numbers which are all
≥ 1. However a − 1, b − 1 need not natural. one or both of them
can be 0 which is not a natural number and therefore the induction
assumption need not be applicable to a− 1, b− 1. For example this
happens if n = 1, a = 1, b = 2. Then a− 1 = 0, b− 1 = 1.

(4) #14 from the book.

Solution

(a) We have that Fn = 22
n

+1 for n = 0, 1, . . . and we need to show
that F0 · . . . ·Fn−1 + 2 = Fn for n ≥ 1. We do this by induction
in n.
First we check the formula for n = 1. F0 = 22

0
+ 1 = 21 + 1 =

3, F1 = 22
1

+ 1 = 5 and F0 + 2 = 3 + 2 = 5 = F1. Thus the
formula holds for n = 1.
Induction step. Suppose we know that F0 · . . . · Fn−1 + 2 = Fn

for some n ≥ 1. We need to show that F0 · . . . · Fn + 2 = Fn+1.

We have Fn+1 = 22
n+1

+ 1 = 22·2
n

+ 1 = (22
n
)2 + 1 = (Fn −

1)2 + 1 = F 2
n − 2Fn + 1 + 1 = Fn(Fn − 2) + 2. By the induction

assumption Fn − 2 = F0 · . . . · Fn−1 and therefore
Fn+1 = (Fn − 2)Fn + 2 = F0 · . . . · Fn−1 · Fn + 2.

(b) Let us first prove the following
Claim Fn, Fm have no common prime factors for n 6= m.
Let m < n. Suppose p is a common prime factor for both
Fn, Fm. Then p|Fn and p|F0 . . . Fn−1 because the latter product
contains Fm as a factor. Thus we can write Fn = ap, F0 . . . Fn−1 =
bp for some natural a, b. By part a) we know that F0 . . . Fn−1 +
2 = Fn which means that bp + 2 = ap. Hence 2 = ap − bp =
p(a− b) and p divides 2. Therefore p = 2 since that’s the only
divisor of 2 bigger than 1. However p can not be 2 since all Fer-
mat numbers are odd. This is a contradiction and hence Fn, Fm

have no common prime divisors. This proves the Claim.
Next, for any n ≥ 1 pick pn to be some prime divisor of Fn.
This gives us a sequence of prime numbers p1, p2, p3, . . .. By the
Claim above they are all distinct which implies that the set of
prime numbers is infinite.


