(1) Give a proof by induction of the following statement used class:

Let m > 1 be a natural number. Then for any $n \ge 0$ there exists an integer *r* such that $0 \le r < m$ and $n \equiv r \pmod{m}$.

- (2) (a) Find $2^{3^{100}} \pmod{5}$
 - (b) Find the last digit of $2^{3^{100}}$. *Hint:* use part a) but remember that 10 is not prime.
- (3) Using the Fundamental Theorem of Arithmetic prove that if gcd(a, b) = 1and a|bc then a|c.
- (4) Find $1 + 2 + 2^2 + 2^3 + \ldots + 2^{219} \pmod{13}$.

(5) Prove the following result used in class. Let $a = p_1^{k_1} \cdot \dots p_m^{l_m}$ where all p_i are prime and $p_i \neq p_j$ for $i \neq j$. Suppose $p_1^{t_1} | a$ where t_1 is a nonnegative integer.

Prove that $t_1 \leq k_1$.