Solutions to selected problems from homework 3

(1) Give a proof by induction of the following statement used class:

Let m > 1 be a natural number. Then for any $n \ge 0$ there exists an integer *r* such that $0 \le r < m$ and $n \equiv r \pmod{m}$.

Solution

We prove it by induction on $n \ge 0$. When n = 0 then r = 0 obviously satisfies $0 \equiv 0 \pmod{m}$. This verifies the base of induction.

Suppose we have proved the statement for some $n \ge 0$. We need to prove it for n + 1. By the induction assumption $n \equiv r \pmod{m}$ for some $0 \le r < m$. Then $n + 1 \equiv r + 1 \pmod{m}$.

There are two possible cases to consider.

Case 1. $0 \le r < m - 1$.

Then $0 \le r+1 < m$ and $n+1 \equiv r+1 \pmod{m}$, i.e. r+1 satisfies the statement for n+1.

Case 2. r = m - 1.

Then r + 1 = m and $n + 1 \equiv r + 1 \equiv m \equiv 0 \pmod{m}$, i.e. 0 satisfies the stetement for n + 1.

This concludes the induction step. \Box .

- (2) (a) Find $2^{3^{100}} \pmod{5}$
 - (b) Find the last digit of $2^{3^{100}}$. *Hint:* use part a) but remember that 10 is not prime.

Solution

(a) Since 5 is prime and 5 does not divide 2, by Fermat's theorem $2^4 \equiv 1 \pmod{5}$. This can also be seen directly by competing $2^4 = 16 \equiv 1 \pmod{5}$. Therefore, $2^{4k} \equiv 1^{4k} \equiv 1 \pmod{5}$ for any $k \ge 1$. Thus we need to find the remainder *r* when 3^{200} is divided by 4. Then $3^{200} = 4k + r$ and $2^{3^{100}} \equiv 2^{4k+r} \equiv 2^{4k} \cdot 2^r \equiv 2^r \pmod{5}$.

To this end observe that $3 \equiv -1 \pmod{4}$ and hence $3^2 \equiv (-1)^2 \equiv 1 \pmod{4}$. (mod 4). Therefore $3^{2m} \equiv 1 \pmod{4}$ for any $m \ge 1$. In particular, $3^{100} = 3^{2 \cdot 50} \equiv 1 \pmod{4}$. Therefore, $3^{100} = 4k + 1$ for some k and hence $2^{3^{100}} \equiv 2^{4k+1} \equiv 2^{4k} \cdot 2^1 \equiv 2 \pmod{5}$.

Answer: $2^{3^{100}} \equiv 2 \pmod{5}$.

- (b) by part a) we know that $2^{3^{100}} \equiv 2 \pmod{5}$, i.e. $5|(2^{3^{100}} 2)$. Since $2^{3^{100}} 2$ is obviously even we also have that $2|(2^{3^{100}} 2)$. Since 2 and 5 are distinct prime numbers by a result from last homework this implies that $10 = 2 \cdot 5$ also divides $2^{3^{100}} 2$, i.e. $2^{3^{100}} \equiv 2 \pmod{10}$ Answer: The last digit of $2^{3^{100}}$ is 2.
- (3) Find $1 + 2 + 2^2 + 2^3 + \ldots + 2^{219} \pmod{13}$.

Solution

Recall that we have proved a general formula that for any $a \neq 1$ and $n \ge 1$ we have

$$1 + a + \ldots + a^n = \frac{a^{n+1} - 1}{a - 1}$$

For a = 2, n = 219 this gives

$$1 + 2 + 2^2 + 2^3 + \ldots + 2^{219} = \frac{2^{220} - 1}{2 - 1} = 2^{220} - 1$$

Thus we need to find $2^{220} \pmod{13}$. By Fermat's theorem we have $2^{12} \equiv 1 \pmod{13}$. We have $220 = 216 + 4 = 12 \cdot 18 + 4$. Therefore

$$2^{220} = (2^{12})^{18} \cdot 2^4 \equiv 1 \cdot 16 \equiv 3 \pmod{13}$$

and hence

$$1 + 2 + 22 + 23 + \dots + 2219 \equiv 2220 - 1 \equiv 3 - 1 \equiv 2 \pmod{13}$$

Answer: $1 + 2 + 2^2 + 2^3 + \ldots + 2^{219} \equiv 2 \pmod{13}$.

(4) Prove the following result used in class.

Let $a = p_1^{k_1} \cdot \ldots p_m^{k_m}$ where all p_i are prime and $p_i \neq p_j$ for $i \neq j$. Suppose $p_1^{t_1} | a$ where t_1 is a nonnegative integer.

Prove that $t_1 \leq k_1$.

Solution

Suppose $t_1 > k_1$ and $p_1^{t_1}|a$. Then $p_1^{t_1}d = a = p_1^{k_1} \cdots p_m^{k_m}$ for some integer *d*. Dividing by $p_1^{k_1}$ we get $p_1^{t_1-k_1}d = p_2^{k_2} \cdots p_m^{l_m}$. Since $t_1 - k_1 > 0$ this means that p_1 divides $p_2^{k_2} \cdots p_m^{l_m}$. By a corollary to the Fundamental Theorem of Arithmetic, if a prime number *p* divides $a_1 \cdots a_n$ then $p|a_i$ for some *i*. Since p_1 divides $p_2^{k_2} \cdots p_m^{k_m}$ this implies that $p_1|p_i$ for some $i \ge 2$. This is a contradiction since p_1, \ldots, p_l are distinct primes. Therefore, $t_1 \le k_1$. \Box .

(5) problem #17 from the book. We need to show that if $2^k + 1$ is prime then k has no other prime divisors other than 2, i.e. $k = 2^m$ for some m. Suppose not. Then $k = p_1 \cdot \ldots \cdot p_n$ where all p_i are prime and at least one $p_i \neq 2$. Without loss of generality $p_n \neq 2$. Then p_n is odd as 2 is the only prime number which is even. Also $p_n > 1$.

We have $k = (p_1 \cdot \ldots \cdot p_{n-1}) \cdot p_n = ab$ where $a = p_1 \cdot \ldots \cdot p_{n-1}$ and $b = p_n > 1$ and is odd.

Claim: $2^a + 1$ divides $2^k + 1$. Indeed, we have $2^a \equiv -1 \pmod{2^a + 1}$ and therefore $2^k = (2^a)^b \equiv (-1)^b \equiv -1 \pmod{2^a + 1}$ since b is odd. Therefore, $2^a + 1$ divides $2^k - (-1) = 2^k + 1$ which proves the Claim.

Next observe that $2^a + 1 > 1$ since $a \ge 1$. Also, $2^a + 1 < 2^k + 1$ since k = ab > a. This means that $2^k + 1$ is not prime. This is a contradiction and therefore k has no other prime divisors other than 2. \Box