
(1) Let p1, p2 be distinct prime numbers.
Using the method from class give a careful proof of the formula

φppk1
1 pk2

2 q � ppk1
1 � pk1�1

1 qppk2
2 � pk2�1

2 q

Solution
Let n � pk1

1 pk2
2 The only prime divisors of n are p1 and p2 so if gcdpm, nq �

1 then either p1|m or p2|m. Thus to compute φpnq we need to write down
the numbers 1, 2, . . . n, cross out those that are divisible by p1 or p2 and
count how many are left.

First let us cross out the numbers divisible by p1. They are 1 � p1, 2 �
p1, . . . , p

n
p 1
qp1. Thus there are n

p 1
� pk1�1

1 pk2
2 of them.

Next, we cross out the numbers divisible by p2. They are 1 � p2, 2 �
p2, . . . , p

n
p 2
qp2. Thus there are n

p 2
� pk1

1 pk2�1
2 of them.

Note however, that we crossed out twice the numbers which are divisible
by both p1 and p2, i.e. the numbers divisible by p1 p2. They are 1 � p1 p2, 2 �
p1 p2, . . . , p

n
p1 p2

qp1 p2. There are n
p1 p2

� pk1�1
1 pk2�1

2 of them.

Thus, φpnq � pk1
1 pk2

2 � pk1�1
1 pk2

2 � pk1
1 pk2�1

2 � pk1�1
1 pk2�1

2 � ppk1
1 �

pk1�1
1 qppk2

2 � pk2�1
2 q.

(2) Let a, b, c be natural numbers. Let pa, b, cq be the largest natural number
that divides a, b and c.
(a) Prove that gcdpa, b, cq � gcdpgcdpa, bq, cq.
(b) Prove that the equation ax � by � cz � gcdpa, b, cq has an integer

solution.

Solution
(a) Let d � gcdpa, b, cq and let d1 � gcdpgcdpa, bq, cq . Then d|a, d|b and

d|c. Therefore, d|gcdpa, bq and d|c and therefore d|d1 � gcdpgcdpa, bq, cq.
Conversely, d1|gcdpa, bq and d1|c and hence d1|a, d1|b, d1|c. There-
fore d1|gcdpa, b, cq � d.
This means that d|d1 and d1|d and hence d � d1. �.

(b) It was proved in class that for any integer a, b the equation ax � by �
gcdpa, bq admits an integer solution x0, y0. Therefore, the equation
k � gcdpa, bq � lc � gcdpgcdpa, bq, cq also admits an integer solution
k0, l0. But by part a) gcdpa, b, cq � gcdpgcdpa, bq, cq. Therefore k0 �
gcdpa, bq � l0c � gcdpa, b, cq. Substituting gcdpa, bq � ax0 � by0
we get gcdpa, b, cq � k0 � gcdpa, bq � l0c � k0 � pax0 � by0q � l0c �
k0x0a � k0y0b � l0c. �.

(3) Find 22201p mod 30q.
Note: Note that gcdp22, 30q � 1!

Solution
Since gcdp22, 30q � 1 we can not use Euler’s theorem directly. Let us

therefore first find 22201p mod 15q. Since gcdp22, 15q � 1, by Euler’s
theorem we have 22φp15q � 1 pmod 15q. We have φp15q � φp3 � 5q �
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p3 � 1q � p5 � 1q � 8. Thus, 228 � 1 pmod 15q. Therefore, 22201 �
22200 � 22 � p228q25 � 22 � 1 � 22 � 7 pmod 15q.

Thus, 15|22201�7. However, 2 � 22201�7 and therefore 30 � 22201�7.
To fix this observe that 7 � 7 � 15 � 22 pmod 15q and thus 22201 � 22
pmod 15q,i.e. 15|22201 � 22. But now we also have that 2|22201 � 22 and
hence 30|22201 � 22, i.e. 22201 � 22 pmod 30q.

Answer: 22201 � 22 pmod 30q.
(4) Find 63101

pmod 22q.

Solution

Let us first find 63101
pmod 11q. We have that gcdp6, 11q � 1 and hence

6φp11q � 610 � 1 pmod 11q. Thus to find 63101
pmod 11q we first need to

find 3101 pmod 10q. because if 3101 � 10k� r for some k and r   10 then
63101

� 610k�r � p610qk � 6r � 6r pmod 11q which is computable because
r   10.

To find 3101 pmod 10qwe notice that gcdp3, 10q � 1 and hence 3φp10q �
34 � 1 pmod 10q. this can also be checked directly because 34 � 81.
Therefore, 3101 � p34q25 � 3 � 1 � 3 � 3 pmod 10q or 3101 � 10k � 3 for
some integer k.

Therefore, 63101
� 610k�3 � p610qk � 63 � 63 pmod 11q � 7 pmod 11q.

This means that 11|63101
� 7. Since 7 is odd 2 � 63101

� 7. But by the
same argument as in the previous problem, observe that 63101

� 7 � 18
pmod 11q and hence 11|63101

�18. Since we also have that 2|63101
�18 this

implies that 22|63101
� 18, i.e. 63101

� 18 pmod 22q.
Answer: 63101

� 18 pmod 22q.
(5) Solve the following congruence equations

(a) 6x � 9 pmod 33q
(b) 24x � 7 pmod 35q

Solution

a) 6x � 9 pmod 33q is equivalent to 33|6x � 9 or 33k � 6x � 9 for
some integer k. Dividing this equation by 3 we get an equivalent equation
11k � 2x � 3 or 2x � 3 pmod 11q. Thus 6x � 9 pmod 33q is equivalent
to 2x � 3 pmod 11q. Observe that x � 7 pmod 11q works since 2 � 7 �
14 � 3 pmod 11q.

Since gcdp2, 11q � 1 this is the only solution mod 11.
Answer: x � 7 pmod 11q.
From textbook:

(6) # 21 on page 59: Let p be an odd prime and let m � 2p We need to prove
that am�1 � a pmod mq for any natural a. Let us first show that am�1 � a
pmod pq. If p|a then am�1 � 0 � a pmod pq. If p � a then ap�1 � 1
pmod pq by Fermat’s theorem and hence a2pp�1q � a2p�2 � 1 pmod pq
also. Multiplying this by a we get a2p�1 � 1 pmod pq. Thus in either case
am�1 � a pmod pq.
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But it is also easy to see that am�1 � a pmod 2q: If a is even then both
am�1 and a are even and if a is odd then both am�1 and a are odd.

Thus 2|am�1 � a and p|am�1 � a and hence 2p|am�1 � a since p is a
prime different from 2. �.

(7) #1 on page 45: We have p � 5, q � 7, E � 7,R � 17. To verify that
D � 5 is a decryptor we ned to check that DE � 1 pmod φqpNq where
N � pq � 35. we compute φp35q � φp5 � 7q � 4 � 6 � 24. Since
5 � 5 � 25 � 1 pmod 24q we see that D � 5 is a decryptor.

To find the original message M we need to compute RD pmod Nq. In
our case this is 175 pmod 35q. We have 172 � 289 � 280� 9 � 35 � 8� 9
and hence 172 � 9 pmod 35q. Therefore, 174 � 92 � 81 � 11 pmod 35q.
Therefore, M � 175 � 174 � 17 � 11 � 17 � 187 � 12 pmod 35q.

Answer: M � 12.
(8) #2 on page 45: We have N � 21, E � 5.

(a) To encrypt M � 7 we have to compute R � ME pmod Nq or 75

pmod 21q. We have 72 � 49 � 42 � 7 � 7 pmod 21q. This eas-
ily implies by induction that 7k � 7 pmod 21q for any k ¥ 1. In
particular, 75 � 7 pmod 21q.

(b) To check that D � 5 is a decryptor we need to verify that DE � 1
pmod φpNqq. We have φp21q � φp3 � 7q � 2 � 6 � 12. We compute
5 � 5 � 25 � 1 pmod 12q which means that D � 5 is a decryptor.

(c) To decrypt the original message we have to compute RD pmod Nq
which in ours case is 75 pmod 21q � 7 pmod 21q. This is the original
number M � 7.


