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Let p1, p2 be distinct prime numbers.
Using the method from class give a careful proof of the formula

ki k k k1—1 k kr—1
¢(p11P22) = (pll _pll )(p22 _p22 )
Solution

Letn = pII‘l p];z The only prime divisors of n are p; and p; so if ged(m, n) #
1 then either p;|m or pa|m. Thus to compute ¢(n) we need to write down
the numbers 1,2, ...n, cross out those that are divisible by p; or p, and
count how many are left.

First let us cross out the numbers divisible by p;. They are 1 - p;,2 -

DPls--es (%l)pl. Thus there are %1 = p'll“*lp];2 of them.

Next, we cross out the numbers divisible by p,. They are 1 - p,,2 -

]éz ~1 of them.

Note however, that we crossed out twice the numbers which are divisible
by both p; and p», i.e. the numbers divisible by p;p,. They are 1- p1p,,2-

k
D2senss (%z)pz. Thus there are %2 =p,'p

_n_ n _ klfl szl
P1P2s s (plpz)plig. I’(Fhere 2re1p]}?2 = pkl kp21 oi thlemk. 1 )
Thus, ¢(”) = p11p22 - plli p22 - p11p22* + plli p227 = (Pll -
ki—1y/ Kk ko —1
pl )(pz - p2 )
Let a, b, c be natural numbers. Let (a, b, c) be the largest natural number

that divides a, b and c.
(a) Prove that ged(a, b, ¢) = ged(ged(a,b), c).
(b) Prove that the equation ax + by + ¢z = gcd(a, b, c) has an integer
solution.
Solution

(a) Letd = ged(a,b,c) and letd, = gcd(gcd(a,b),c) . Thend|a,d|b and

d|c. Therefore, d|gcd(a, b) and d|c and therefore d|d; = gcd(gcd(a,b),c).

Conversely, d;|gcd(a,b) and d,|c and hence d,|a,d|b,d;|c. There-
fore d;|gcd(a,b,c) = d.
This means that d|d; and d;|d and hence d = d,. 0.

(b) It was proved in class that for any integer a, b the equation ax + by =
gced(a, b) admits an integer solution xg,yo. Therefore, the equation
k- gcd(a,b) + lc = ged(ged(a, b), ¢) also admits an integer solution
ko, lp. But by part a) ged(a,b,c) = ged(ged(a,b),c). Therefore k -
ged(a,b) + lopc = ged(a,b,c). Substituting ged(a,b) = axy + by
we get ged(a, b, c) = ko - ged(a,b) + loc = ko - (axo + byo) + loc =
koxoa + koyob + lpc. 0.

Find 222! (' mod 30).

Note: Note that ged(22,30) # 1!

Solution

Since gcd(22,30) # 1 we can not use Euler’s theorem directly. Let us
therefore first find 222°! (' mod 15). Since gcd(22,15) = 1, by Euler’s

theorem we have 22¢(1) = 1 (mod 15). We have ¢(15) = ¢(3 - 5) =
1
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(3—1)-(5—1) = 8. Thus, 22 = 1 (mod 15). Therefore, 22?°! =
22%00.22 = (228)%.22=1-22=7 (mod 15).

Thus, 15[222°" —7. However, 2 } 222°! —7 and therefore 30 y 220! —7.
To fix this observe that 7 = 7 4+ 15 = 22 (mod 15) and thus 222! = 22
(mod 15),i.e. 15/222°1 — 22. But now we also have that 2|2220! — 22 and
hence 30[222°" — 22, i.e. 222°! =22 (mod 30).

Answer: 222! =22 (mod 30).

Find 63" (mod 22).

Solution

Let us first find 6 (mod 11). We have that gcd(6, 11) = 1 and hence
6?01 = 610 = 1 (mod 11). Thus to find 63" (mod 11) we first need to
find 3'°" (mod 10). because if 3'°! = 10k + r for some k and r < 10 then
63" = 610k = (6!9% . 6" = 6" (mod 11) which is computable because
r < 10.

To find 3'°' (mod 10) we notice that gcd(3, 10) = 1 and hence 3¢(10) =
3* = 1 (mod 10). this can also be checked directly because 3* = 81.
Therefore, 319! = (3*)2.3=1-3 =3 (mod 10) or 3'% = 10k + 3 for
some integer k.

Therefore, 63 = 610673 = (619)k. 63 = 63 (mod 11) =7 (mod 11).
This means that 11|63 — 7. Since 7 is odd 2 f 63" — 7. But by the
same argument as in the previous problem, observe that 63" =7=18
(mod 11) and hence 11|63ml —18. Since we also have that 2|6310l — 18 this
implies that 2263 — 18, i.e. 6 =18 (mod 22).

Answer: 6°° =18 (mod 22).

Solve the following congruence equations
(a) 6x=9 (mod 33)
(b) 24x =7 (mod 35)

Solution

a) 6x = 9 (mod 33) is equivalent to 33|6x — 9 or 33k = 6x — 9 for
some integer k. Dividing this equation by 3 we get an equivalent equation
11k =2x—30or2x =3 (mod 11). Thus 6x =9 (mod 33) is equivalent
to 2x = 3 (mod 11). Observe that x = 7 (mod 11) works since 2 - 7 =
14 =3 (mod 11).

Since gecd(2,11) = 1 this is the only solution mod 11.

Answer: x =7 (mod 11).

From textbook:

#21 on page 59: Let p be an odd prime and let m = 2p We need to prove
that @"~! = a (mod m) for any natural a. Let us first show that "' = a
(mod p). If plathen @™ ! =0 =a (mod p). If p / athena’ ! = 1
(mod p) by Fermat’s theorem and hence a®?~) = ¢*~2 = 1 (mod p)
also. Multiplying this by a we geta®”~! =1 (mod p). Thus in either case
a" ' =a (mod p).
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But it is also easy to see that @' = a (mod 2): If a is even then both
@™ ! and a are even and if a is odd then both @™~ ! and a are odd.

Thus 2|a” ! — a and p|a™~! — a and hence 2p|a”~' — a since p is a
prime different from 2. 0.

(7) #1 on page 45: We have p = 5,9 = 7,E = 7,R = 17. To verify that
D = 5 is a decryptor we ned to check that DE = 1 (mod ¢)(N) where
N = pqg = 35. we compute ¢(35) = ¢(5-7) = 4-6 = 24. Since
5-5=25=1 (mod 24) we see that D = 5 is a decryptor.

To find the original message M we need to compute R” (mod N). In
our case this is 17° (mod 35). We have 17> = 289 = 280+9 = 35-8+9
and hence 17> = 9 (mod 35). Therefore, 174 = 9% = 81 = 11 (mod 35).
Therefore, M = 17° = 17* - 17 =11 - 17 = 187 = 12 (mod 35).

Answer: M = 12.

(8) #2 on page 45: We have N = 21, E = 5.

(a) To encrypt M = 7 we have to compute R = M? (mod N) or 73
(mod 21). We have 72 = 49 = 42 +7 = 7 (mod 21). This eas-
ily implies by induction that 7¥ = 7 (mod 21) for any k > 1. In
particular, 7° = 7 (mod 21).

(b) To check that D = 5 is a decryptor we need to verify that DE = 1
(mod ¢(N)). We have ¢(21) = ¢(3-7) =2 -6 = 12. We compute
5-5=25=1 (mod 12) which means that D = 5 is a decryptor.

(c) To decrypt the original message we have to compute R” (mod N)
which in ours case is 77 (mod 21) =7 (mod 21). This is the original
number M = 7.



