- (1) #3 on page 83:
 - (a) find $\sqrt{-i}$
 - (b) find $\sqrt{-15 8i}$.

Solution

- (a) since |-i| = 1 we write $-i = 1 \cdot (\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2}))$. Therefore, $\sqrt{-i} = \pm(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})) = \pm(\frac{1}{\sqrt{2}} i\frac{1}{\sqrt{2}})$ Answer: $\sqrt{-15-8i} = \pm(\frac{1}{\sqrt{2}} i\frac{1}{\sqrt{2}})$.
- (b) Firs we compute $|-15 8i| = \sqrt{15^2 + 8^2} = \sqrt{289} = 17$. Hence we can write -15 8i as $-15 8i = 17(-\frac{15}{17} i\frac{8}{17}) = 17(\cos\theta + i\sin\theta)$ where $\cos\theta = -\frac{15}{17}$ and $\sin\theta = -\frac{8}{17}$. Note that this means that $\pi < \theta < 3\pi/2$.

 Then $\sqrt{-15 8i} = \pm \sqrt{17}(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2})$. Since $\pi < \theta < 3\pi/2$ we have that $\pi/2 < \theta < 3\pi/4$ and hence $\cos\frac{\theta}{2} < 0$, $\sin\frac{\theta}{2} > 0$. Using the formula $\cos\theta = 2\cos^2\frac{\theta}{2} 1$ we get $2\cos^2\frac{\theta}{2} 1 = -\frac{15}{17}$, $\cos^2\frac{\theta}{2} = \frac{1}{17}$, $\cos\frac{\theta}{2} = -\frac{1}{\sqrt{17}}$. since $\sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2} = 1$ this gives $\sin\frac{\theta}{2} = \frac{4}{\sqrt{17}}$.

Thus, $\sqrt{17}(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}) = \sqrt{17}(-\frac{1}{\sqrt{17}} + i\frac{4}{\sqrt{17}}) = -1 + 4i$.

Answer: $\sqrt{-15-8i} = \pm(-1+4i)$.

(2) #7 on page 83: Find all solutions of $iz^2 + 2z + i = 0$.

Solution

By the general formula for solving $az^2 + bz + c = 0$ we have $z = \frac{-1 \pm \sqrt{1^2 - i^2}}{i} = \frac{-1 \pm \sqrt{2}}{i} = i \pm i\sqrt{2}$.

Answer: $i \pm i\sqrt{2}$

(3) #9 on page 83: Solve $z^6 + z^3 + 1 = 0$.

Solution

Let $x=z^3$. Then x satisfies $x^2+x+1=0$ so $x=\frac{-1\pm\sqrt{-3}}{2}=\frac{-1\pm\sqrt{3}i}{2}$. We have two possibilities

- 1) $x = \frac{-1+\sqrt{3}i}{2} = \cos(2\pi/3) + i\sin(2\pi/3)$. Solving $z^3 = x = \cos(2\pi/3) + i\sin(2\pi/3)$ we get $z = \cos(2\pi/9 + \frac{2\pi k}{3}) + i\sin(2\pi/9 + \frac{2\pi k}{3})$ where k = 0, 1, 2. This gives 3 solutions when k = 0 we get $z_1 = \cos(2\pi/9) + i\sin(2\pi/9)$ when k = 1 we get $z_2 = \cos(2\pi/9 + \frac{2\pi}{3}) + i\sin(2\pi/9 + \frac{2\pi}{3}) = \cos(\frac{8\pi}{9}) + i\sin(\frac{8\pi}{9})$ when k = 2 we get $z_3 = \cos(2\pi/9 + \frac{4\pi}{3}) + i\sin(2\pi/9 + \frac{4\pi}{3}) = \cos(\frac{14\pi}{9}) + i\sin(\frac{14\pi}{9})$
- 2) $x = \frac{-1 \sqrt{3}i}{2} = \cos(4\pi/3) + i\sin(4\pi/3)$. Solving $z^3 = x = \cos(4\pi/3) + i\sin(4\pi/3)$ we get $z = \cos(4\pi/9 + \frac{2\pi k}{3}) + i\sin(4\pi/9 + \frac{2\pi k}{3})$ where k = 0, 1, 2. As before, this gives 3 solutions when k = 0 we get $z_4 = \cos(4\pi/9) + i\sin(4\pi/9)$

when
$$k = 1$$
 we get $z_5 = \cos(4\pi/9 + \frac{2\pi}{3}) + i\sin(4\pi/9 + \frac{2\pi}{3}) = \cos(\frac{10\pi}{9}) + i\sin(\frac{10\pi}{9})$
when $k = 2$ we get $z_6 = \cos(4\pi/9 + \frac{4\pi}{3}) + i\sin(4\pi/9 + \frac{4\pi}{3}) = \cos(\frac{16\pi}{9}) + i\sin(\frac{16\pi}{9})$

(4) #14 on page 84: Show that every non-constant polynomial $p(z) = a_n z^n + \ldots + a_1 z + a_0$ with real coefficients can be factored as a product of polynomials of degree 1 or 2 with real coefficients.

Solution

We prove it by induction on n. When n = 1 $P(z) = a_1z + a_0$ has degree 1 and there is nothing to prove. This verifies the base of induction.

Suppose we have proved the result for all polynomials of degree $\leq n$. Let $P(z) = a_{n+1}z^{n+1} + a_nz^n + \ldots + a_1z + a_0$ where all a_i are real and $a_{n+1} \neq 0$. By the fundamental theorem of Algebra $P(z) = a_n(z-z_1)(z-z_2)\ldots(z-z_{n+1})$ has a complex root z_1 and hence $P(z) = (z-z_1)Q(z)$ where $Q(z) = a_n(z-z_2)\ldots(z-z_{n+1})$ is polynomial of degree n.

If z_1 is real then the division procedure for polynomials shows that $Q(z) = \frac{P(z)}{z-z_1}$ has real coefficients. Therefore, by the induction assumption it's a product of real polynomials of degree 1 or 2 and hence so is P(z).

Now suppose z_1 is not real. Then $z_1 = a + bi$ where $a, b \in \mathbb{R}$ and $b \neq 0$. Then by a problem from the previous homework, $\bar{z}_1 = a - bi$ is also a root of P(z). WLOG, $z_2 = \bar{z}_1 = a - bi$.

Then, $P(z) = (z-z_1)(z-z_2)R(z)$ where $R(z) = a_n(z-z_3)\dots(z-z_{n+1})$ is polynomial of degree n-1.

Notice that $P_1(z) = (z - z_1)(z - z_2) = (z - a - bi)(z - a + bi) = (z - a)^2 - (bi)^2 = z^2 - 2az + a^2 + b^2$ is a quadratic polynomial with real coefficients. Therefore $R(z) = \frac{P(z)}{P_1(z)}$ also has real coefficients. Since it has degree n - 1, it's a product of real polynomials of degree 1 or 2 and hence so is P(z) \square .