- (1) Let S = (0,1) and T = [0,1). Let $f: S \to T$ be given by f(x) = xand $g: T \to S$ be given by $g(x) = \frac{x+1}{2}$.
 - (a) Find $S_S, S_T, S_\infty, T_S, T_T, T_\infty$
 - (b) give an explicit formula for a 1-1 and onto map $h: S \to T$ coming from f and g using the proof of the Cantor-Berenstein theorem.

Solution

Observe that f(S) = (0,1) and g(T) = [1/2,1). Therefore any $x \in S$ with 0 < x < 1/2 has no ancestors and thus is its own last ancestor. Therefore, $x \in S_S$. Next, x = 1/2 = g(0) by 0 is not equal to f(x) for any x. therefore, $x = 1/2 \in S_T$.

Next, for 1/2 < x < 3/4 we see that x = g(y) where 0 < y < 1/2and y = f(y). As already observed this y as an element of S has no ancestors and therefore is the last ancestor of x. hence $x \in S_S$.

Next, x = 3/4 = g(1/2), 1/2 = f(1/2), 1/2 = g(0) and 0 is not in the image of S. Thus $0 \in T$ is the last ancestor of 3/4 and hence $3/4 \in S_T$. proceeding by induction on n we see that all $x \in S$ satisfying $1 - \frac{1}{2^n} < x < 1 - \frac{1}{2^{n+1}}$ has the last ancestor in S and hence $x \in S_S$. Also by induction we see that the last ancestor of $1 - \frac{1}{2^n}$ is $0 \in T$ and hence $1 - \frac{1}{2^n} \in S_T$ for all $n \ge 1$.

This means that $S_T = \{1 - \frac{1}{2^n}, n \ge 1\} = \{1/2, 3/4, 7/8, 15/16...\},\$ $S_S = (0,1) \setminus S_T = \{x \in (0,1) | \text{ such that } x \neq 1 - \frac{1}{2^n}, n \ge 1\}$ and $S_{\infty} = \emptyset.$

This implies that $T_{\infty} = \emptyset$, $T_T = g^{-1}(S_T) = \{1 - \frac{1}{2^n}, n \ge 1\} =$ $\{1-\frac{1}{2^n}, n \ge 0\} = \{1/2, 3/4, 7/8, 15/16, \ldots\}$ and $T_S = T \setminus T_T$.

Finally, by the proof of the Cantor-Berenstein theorem, the following map $h: S \to T$ is 1-1 and onto.

$$h(x) = \begin{cases} f(x) \text{ if } x \in S_S \text{ or } x \in S_\infty \\ g^{-1}(x) \text{ if } x \in S_T \end{cases}$$

In our case this gives

$$h(x) = \begin{cases} x \text{ if } x \in \neq 1 - \frac{1}{2^n} \\ 1 - \frac{1}{2^{n-1}} \text{ if } x = 1 - \frac{1}{2^n} \end{cases}$$

(2) Find the cardinality of the circle $S^1 = \{x^2 + y^2 = 1\}$ in \mathbb{R}^2 .

Solution

 S^1 is a subset of \mathbb{R}^2 and therefore $|S^1| \leq |\mathbb{R}^2| = |\mathbb{R}|$. On the other hand consider the map $f: [-1,1] \to S^1$ given by $f(x) = (x, \sqrt{1-x^2})$. Obviously f is 1-1 and therefore $|[-1, 1]| \leq 1$ $|S^1|.$

We know that $|[-1,1]| = |\mathbb{R}|$ and hence $|\mathbb{R}| = |[-1,1]| \le |S^1|$.

Thus, by the Cantor-Berenstein theorem, $|S^1| = |\mathbb{R}^2| = |\mathbb{R}| = c$. (recall that the cardinality of \mathbb{R} is denoted by c.) **Answer:** $|S^1| = c$.

(3) Find the cardinally of the set of all functions $f: \{a, b, c, d\} \to \mathbb{Z}$

Solution

A function $f: \{a, b, c, d\} \to \mathbb{Z}$ is determined by the quadruple (f(a), f(b), f(c), f(d)) which is an element of \mathbb{Z}^4 . This gives a 1-1 and onto map from the set of functions $\{f: \{a, b, c, d\} \to \mathbb{Z}\}$ to \mathbb{Z}^4 . Therefore, $|\{f: \{a, b, c, d\} \to \mathbb{Z}\}$ to \mathbb{Z}^4 .

Therefore, $|\{f: \{a, b, c, d\} \to \mathbb{Z}\}| = |\mathbb{Z}^4| = |N|.$ **Answer:** $|\{f: \{a, b, c, d\} \to \mathbb{Z}\}| = |\mathbb{Z}^4| = |N|.$

(4) page 107, #19

Find the cardinality of the set $S = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{Q}\}$

Solution

First, observe that $S \subset \mathbb{R}^2$ and hence $|S| \leq |\mathbb{R}^2| = |\mathbb{R}| = c$.

On the other hand, S contains the set $\mathbb{R} \times \{0\} = \{(x,0) : x \in \mathbb{R}$. Hence $|S| \ge |\mathbb{R} \times \{0\}| = |\mathbb{R}|$. therefore, By Cantor-Beresntein theorem, $|S| = |\mathbb{R}| = c$.

Answer: |S| = c.