(1) Find a mistake in the following "proof".

Claim: $1 + 2 + ... + n = \frac{1}{2}(n + \frac{1}{2})^2$ for any natural n.

We proceed by induction on n.

- a) The claim is true for n = 1.
- b) Suppose we have already proved the claim for some $n \geq 1$. We need to prove it for n + 1.

We know that $1+2+\ldots+n=\frac{1}{2}(n+\frac{1}{2})^2$. Then $1+2+\ldots+n+(n+1)=\frac{1}{2}(n+\frac{1}{2})^2+(n+1)=\frac{1}{2}(n^2+n+\frac{1}{4}+2(n+1))=\frac{1}{2}(n^2+3n+\frac{9}{4})=\frac{1}{2}(n+\frac{3}{2})^2=\frac{1}{2}((n+1)+\frac{1}{2})^2$.

This verifies the claim for n+1 and therefore the claim is true for all natural n.

Solution

The mistake is that the claim is actually false for the base of induction n=1 so the induction can not be started. Indeed for n=1 the LHS is equal to 1 but the RHS is equal to $\frac{1}{2}(1+\frac{1}{2})^2=\frac{9}{8}\neq 1$.

(2) Find $6^{3^{100}} \pmod{22}$.

Solution

We first find $6^{3^{100}}$ (mod 11). Since 11 is prime and (6,11) = 1 we have that $6^{10} \equiv 1 \pmod{11}$. So we need to find $3^{100} \pmod{10}$. Since (3,10) = 1 we have that $3^{\phi(10)} \equiv 1 \pmod{10}$. We compute $\phi(10) = \phi(2 \cdot 5) = (2-1) \cdot (5-1) = 4$. Therefore $3^4 \equiv 1 \pmod{10}$. This can also be seen directly without appealing to Euler's theorem because $3^4 = 81 \equiv 1 \pmod{10}$. Hence $3^{4k} \equiv 1 \pmod{10}$ for any natural k and in particular, $3^{100} = 3^{4 \cdot 25} \equiv 1 \pmod{10}$. In other words $3^{100} = 10m + 1$ for some m and therefore $6^{3^{100}} = 6^{10m+1} \equiv 1 \cdot 6^1 \equiv 6 \pmod{11}$. This means that 11 divides $6^{3^{100}} - 6$. But we also obviously have that 2 divides $6^{3^{100}} - 6$. Since (2,11) = 1 this implies that 22 divides $6^{3^{100}} - 6$, i.e.

Answer: $6^{3^{100}} \equiv 6 \pmod{22}$.

(3) Let a, b, c be natural numbers such that (a, b) = 1. Suppose a divides c and b divides c.

Prove that ab also divides c.

Solution

Since (a, b) = 1 we can find integer x, y such that ax + by = 1. Multiplying this by c we get axc + byc = c. Since a|c we can write c = ak and since b|c we can write c = lb for some integer k, l. Therefore

$$c = axc + byc = axlb + byka = ab(xl + ky)$$
 and hence $ab|c$.

(4) Let p = 3, q = 5 and E = 11. Let $N = 3 \cdot 5 = 15$. The receiver broadcasts the numbers N = 15, E = 11. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number R = 3.

Decode the original message M.

Solution

First we find $\phi(N) = (3-1) \cdot (5-1) = 8$. We need to find D such that $ED \equiv (1 \mod 8)$. This can be done using the Euclidean algorithm or we can simply notice that $11 \cdot 3 = 33 \equiv 1 \pmod 8$ so D = 8 works.

Then $M \equiv R^D \pmod{N} = 3^3 \pmod{15} = 27 \pmod{15} \equiv 12 \pmod{15}$.

Answer: M = 12.

- (5) Mark True or False. If true explain why, if false give a counterexample.
 - (a) The product of any two irrational numbers is irrational.
 - (b) For any prime p we have $((p-1)!)^2 \equiv 1 \pmod{p}$.

Solution

- (a) **False.** For example, take $x = \sqrt{2}$ and $y = \frac{1}{\sqrt{2}}$ then both x and y are irrational but $x \cdot y = 1$ is rational.
- (b) **True.** By Wilson's theorem $(p-1)! \equiv -1 \pmod{p}$ and therefore $((p-1)!)^2 \equiv (-1)^2 = 1 \pmod{p}$.