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Solutions to Practice Term Test 4, Winter 2015

Prove that there are infinitely many prime numbers of the form 4% + 3.
Hint: If py, pa, . .. p, are n such primes, look at 4(py - pa - ... p,) — 1.

Solution

Suppose there are only finitely many prime numbers of the form 4k + 3. Let py,ps,...p, be all of
them.
Let N =4(p1-p2-...-pn) — 1. Obviously, N =3 (mod 4)

Consider its prime factorization N = ¢, - ... q.
Note that N is odd and hence all ¢; are odd. We claim that there is at least one ¢ such that ¢; = 3
(mod 4). If not then ¢; = 1 (mod 4) for all i and hence N =¢; -...-¢g=1-...-1 =1 (mod 4).

However, this contradicts the fact that N =3 (mod 4).

Thus, at least one ¢; satisfies ¢; = 3 (mod 4). By renumbering ¢;s we can assume that ¢; = 3
(mod 4).

Next we claim that ¢; # p; for all j. Suppose this is not true and ¢; = p; for some j. Then ¢
divides N and ¢; = p; divides N +1=4(py - p2 - ... p,). Therefore, ¢; divides N+1— N =1 and
hence ¢; = 1. This is a contradiction as all prime numbers are bigger than 1. Thus ¢ is different
from all p;. We also know that ¢ = 3 (mod 4), i.e. it’s equal to 4k + 3 for some integer k. This
contradicts our original assumption that py,...,p, were all possible primes of this form. Therefore,
there exist infinitely many prime numbers of the form 4k + 3. [

Using induction prove that for all natural n the following inequality holds:
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1
ﬁ+%+...%<2\/ﬁ

Solution

We prove the inequality by induction. First we check that it holds for n = 1. We have that
%ﬁ =1 < 2¢/1 = 2. This verifies the base of induction.
Induction Step. Suppose we have already proved that % + \% +... \/iﬁ < 24/n for some n > 1.
1
We need to verify that f + f +. f \/W < 2v/n —|—

1 1
Using the induction assumptlon we get f + f + . f + \/n_T < 2\/_ + \/n_T

Thus it’s enough to prove that 2/n n+1 n —
\/m. Since both sides of this inequality are clearly p081tlve it’s equivalent to
1
24/n)* < (2v/n + 2=4(n+1)+ —4, = ;
(2vn)* < ( e U G A nt 1 nt 1
n+1

which is true. This proves the induction step.  [l.
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Find the general integer solution of the following equation

220 + T4y =4
Solution
First we divide the equation by 2 to get an equivalent one

11z + 37y =2

Since ged(37,11) = 1 there exist integer x,y such that 11z 4+ 37y = 1. We can find one such pair
using the BEuclidean algorithm.

37=3-1144,11=2-4+3,4=1-3+1.

This gives 4 =37-1—-11-3,3=11-1-4-2=11-1-(37-1-11-3)-2=11-7—-37-2.

Lastly from the equality 4 = 1-34+1weget 1 =4—-3 =37-1—11-3—(11-7—37-2) = 37-3—11-10.

Multiplying the equality 1 =37-3 — 1110 by 2 we get 2 =37-6 — 11 - 20.

Thus zp = —20,y9 = 6 satisfy 11lxg + 37yg = 2. Since gcd(11,37) = 1 the general solution of
N+ 37y =21is xg + 37k, yo — 11k or x = —20 + 37k, y = 6 — 11k where k is any integer.
(a) Find

14+34+32+...+3" (mod 7)
Solution
Let ¥ = 1+3+432+...+3%, Recall that we have a general formula 1+a+a?+...+a" =

for any a # 1. Using this with a = 3,n = 2014 gives X = 320125_1.
Next we find 32! (mod 7). Since 7 is prime and does not divide 3 we have that 3° = 1 by
Fermat’s theorem. Therefore, 3% = 1 (mod 7) for any natural k. Dividing 2015 by 6 with
remainder we obtain 2015 = 335 - 6 + 5. Therefore, 3201° = 33356 .35 = 3% (mod 7) = 32 - 33
(mod 7)=2-6 mod 7=5 (mod 7). Thus 3**1% =5 (mod 7) and 3%* — 1 =4 (mod 7).
By above ¥ = 320125_1 so that 2X =4 (mod 7).
Since ged(2,7) = 1 the equation 2z = 4 (mod 7) has a unique solution mod 7. Obviously,
x =2 (mod 7) works and hence
¥ =2 (mod 7).
(b) Find 40! (mod 43)

antl—1
a—1

Solution
Since 43 is prime, by Wilson’s theorem, 42! = —1 (mod 43). We can rewrite this as 40!-41-42 =
—1 (mod 43). Hence 40! (=2) - (=1) = —1 (mod 43),2 - 40! = —1 (mod 43). Observe that
2-22 =44 =1 (mod 43). therefore, multiplying the equality 2 -40! = —1 (mod 43) by 22 we
get (22-2)-40! = —22 (mod 43), 1-40! = —22 (mod 43) = 21 (mod 43).
Answer: 40! = 21 (mod 43).

3 . . .
Prove that %ﬁ is irrational.

Solution
Let us first prove that zy = /7 is irrational. It’s a root of #° — 7 = 0. Suppose it’s rational.
Then by the rational root theorem it can be written as § where gcd(p,q) = 1,p| — 7, ¢q|1. Therefore,
p = =£1,£7,q = £1 which means that the only options for xy are xqg = 1, 7. Direct substitution
shows that none of these numbers satisfy 23 — 7 = 0 and hence /7 is irrational.
Next suppose x = 2’;?? is rational. Then 11.1z = 2 + 3V/7, %:1: =24 3V/7, 111—013: — 2 =437,
o2 /7. Since sums, products and quotients of rational numbers are rational, if z is rational

3
TP
then 10; 2 is rational too which means that /7 is rational. However, we proved that it’s irrational.

This is a contradiction and therefore z is irrational.
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Two people are communicating using the RSA encryption system. The receiver broadcasts the
numbers N = 69, ' = 5. The sender wants to send a secret message M to the receiver. What is
sent is the number R = 2.

Decode the original message M.

Solution

We have N =69 = 3-23 and ¢(N) = (3—1)- (23 — 1) = 44. In order to decode the message
we need to find natural D such that DE =1 (mod N) or 5D =1 (mod 44). We can find D using
the Euclidean algorithm or we can just observe that 9-5 =45 =1 (mod 44) so that D = 9 works.
therefore M = RP (mod N), M = 2° (mod 69). We compute 26 = 64 = —5 (mod 69),23 = 8 and
hence 2° = 26.23 = —5.8 (mod 69) = —40 (mod 69) = 29 (mod 69).

Answer: M = 29.

Let a, m be natural numbers.
Prove that there exists an integer b such that ab =1 (mod m) if and only if ged(a, m) = 1.

Solution

Suppose gcd(a,m) = 1. Then as a consequence of the Euclidean algorithm there exist integer
x,y such that ax + my = ged(a,m) = 1. Then ax = 1 — my which means that ax = 1 (mod m).
Therefore b = z satisfies ab =1 (mod m).

Conversely, suppose there is an integer b such that ab = 1 (mod m). This means that ab — 1 =
mk,ab — km = 1 for some integer k. Let d = ged(a,m). Then a = da’,m = dm’ for some natural
a’,m'. Hence 1 = ab — km = da'b — kdm’ = d(a’b — km'). This means that d divides 1 and hence
d=1. O



