
Solutions to Practice Term Test 4, Winter 2015

(1) Prove that there are infinitely many prime numbers of the form 4k + 3.

Hint: If p1, p2, . . . pn are n such primes, look at 4(p1 · p2 · . . . · pn)− 1.

Solution

Suppose there are only finitely many prime numbers of the form 4k + 3. Let p1, p2, . . . pn be all of
them.

Let N = 4(p1 · p2 · . . . · pn)− 1. Obviously, N ≡ 3 (mod 4)
Consider its prime factorization N = q1 · . . . · ql.
Note that N is odd and hence all qi are odd. We claim that there is at least one i such that qi ≡ 3

(mod 4). If not then qi ≡ 1 (mod 4) for all i and hence N = q1 · . . . · ql ≡ 1 · . . . · 1 ≡ 1 (mod 4).
However, this contradicts the fact that N ≡ 3 (mod 4).

Thus, at least one qi satisfies qi ≡ 3 (mod 4). By renumbering qis we can assume that q1 ≡ 3
(mod 4).

Next we claim that q1 6= pj for all j. Suppose this is not true and q1 = pj for some j. Then q1
divides N and q1 = pj divides N + 1 = 4(p1 · p2 · . . . · pn). Therefore, q1 divides N + 1−N = 1 and
hence q1 = 1. This is a contradiction as all prime numbers are bigger than 1. Thus q1 is different
from all pj. We also know that q1 ≡ 3 (mod 4), i.e. it’s equal to 4k + 3 for some integer k. This
contradicts our original assumption that p1, . . . , pn were all possible primes of this form. Therefore,
there exist infinitely many prime numbers of the form 4k + 3. �

(2) Using induction prove that for all natural n the following inequality holds:
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Solution

We prove the inequality by induction. First we check that it holds for n = 1. We have that
1√
1

= 1 < 2
√

1 = 2. This verifies the base of induction.

Induction Step. Suppose we have already proved that 1√
1
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+ . . . 1√
n
< 2
√
n for some n ≥ 1.
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Using the induction assumption we get 1√
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Thus, it’s enough to prove that 2
√
n+ 1√
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n+ 1. This is equivalent to 2
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. Since both sides of this inequality are clearly positive it’s equivalent to
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which is true. This proves the induction step. �.
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(3) Find the general integer solution of the following equation

22x+ 74y = 4

Solution

First we divide the equation by 2 to get an equivalent one

11x+ 37y = 2

Since gcd(37, 11) = 1 there exist integer x, y such that 11x+ 37y = 1. We can find one such pair
using the Euclidean algorithm.

37 = 3 · 11 + 4, 11 = 2 · 4 + 3, 4 = 1 · 3 + 1.
This gives 4 = 37 · 1− 11 · 3, 3 = 11 · 1− 4 · 2 = 11 · 1− (37 · 1− 11 · 3) · 2 = 11 · 7− 37 · 2.
Lastly from the equality 4 = 1·3+1 we get 1 = 4−3 = 37·1−11·3−(11·7−37·2) = 37·3−11·10.
Multiplying the equality 1 = 37 · 3− 11 · 10 by 2 we get 2 = 37 · 6− 11 · 20.
Thus x0 = −20, y0 = 6 satisfy 11x0 + 37y0 = 2. Since gcd(11, 37) = 1 the general solution of

11x+ 37y = 2 is x0 + 37k, y0 − 11k or x = −20 + 37k, y = 6− 11k where k is any integer.
(4) (a) Find

1 + 3 + 32 + . . .+ 32014 (mod 7)

Solution
Let Σ = 1+3+32+. . .+32014. Recall that we have a general formula 1+a+a2+. . .+an = an+1−1

a−1
for any a 6= 1. Using this with a = 3, n = 2014 gives Σ = 32015−1

2
.

Next we find 32015 (mod 7). Since 7 is prime and does not divide 3 we have that 36 ≡ 1 by
Fermat’s theorem. Therefore, 36k ≡ 1 (mod 7) for any natural k. Dividing 2015 by 6 with
remainder we obtain 2015 = 335 · 6 + 5. Therefore, 32015 = 3335·6 · 35 ≡ 35 (mod 7) ≡ 32 · 33

(mod 7) ≡ 2 · 6 mod 7 ≡ 5 (mod 7). Thus 32015 ≡ 5 (mod 7) and 32015 − 1 ≡ 4 (mod 7).

By above Σ = 32015−1
2

so that 2Σ ≡ 4 (mod 7).
Since gcd(2, 7) = 1 the equation 2x ≡ 4 (mod 7) has a unique solution mod 7. Obviously,
x ≡ 2 (mod 7) works and hence
Σ ≡ 2 (mod 7).

(b) Find 40! (mod 43)
Solution

Since 43 is prime, by Wilson’s theorem, 42! ≡ −1 (mod 43). We can rewrite this as 40!·41·42 ≡
−1 (mod 43). Hence 40! · (−2) · (−1) ≡ −1 (mod 43), 2 · 40! ≡ −1 (mod 43). Observe that
2 · 22 = 44 ≡ 1 (mod 43). therefore, multiplying the equality 2 · 40! ≡ −1 (mod 43) by 22 we
get (22 · 2) · 40! ≡ −22 (mod 43), 1 · 40! ≡ −22 (mod 43) ≡ 21 (mod 43).
Answer: 40! ≡ 21 (mod 43).

(5) Prove that 2+3 3√7
11.1

is irrational.

Solution

Let us first prove that x0 = 3
√

7 is irrational. It’s a root of x3 − 7 = 0. Suppose it’s rational.
Then by the rational root theorem it can be written as p

q
where gcd(p, q) = 1, p| − 7, q|1. Therefore,

p = ±1,±7, q = ±1 which means that the only options for x0 are x0 = ±1,±7. Direct substitution
shows that none of these numbers satisfy x3 − 7 = 0 and hence 3

√
7 is irrational.

Next suppose x = 2+3 3√7
11.1

is rational. Then 11.1x = 2 + 3 3
√

7, 111
10
x = 2 + 3 3

√
7, 111

10
x − 2 = +3 3

√
7,

111
10

x−2
3

= 3
√

7. Since sums, products and quotients of rational numbers are rational, if x is rational

then
111
10

x−2
3

is rational too which means that 3
√

7 is rational. However, we proved that it’s irrational.
This is a contradiction and therefore x is irrational.
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(6) Two people are communicating using the RSA encryption system. The receiver broadcasts the
numbers N = 69, E = 5. The sender wants to send a secret message M to the receiver. What is
sent is the number R = 2.

Decode the original message M .

Solution

We have N = 69 = 3 · 23 and φ(N) = (3 − 1) · (23 − 1) = 44. In order to decode the message
we need to find natural D such that DE ≡ 1 (mod N) or 5D ≡ 1 (mod 44). We can find D using
the Euclidean algorithm or we can just observe that 9 · 5 = 45 ≡ 1 (mod 44) so that D = 9 works.
therefore M = RD (mod N), M = 29 (mod 69). We compute 26 = 64 ≡ −5 (mod 69), 23 = 8 and
hence 29 = 26 · 23 ≡ −5 · 8 (mod 69) ≡ −40 (mod 69) ≡ 29 (mod 69).
Answer: M = 29.

(7) Let a,m be natural numbers.
Prove that there exists an integer b such that ab ≡ 1 (mod m) if and only if gcd(a,m) = 1.

Solution

Suppose gcd(a,m) = 1. Then as a consequence of the Euclidean algorithm there exist integer
x, y such that ax + my = gcd(a,m) = 1. Then ax = 1 −my which means that ax ≡ 1 (mod m).
Therefore b = x satisfies ab ≡ 1 (mod m).

Conversely, suppose there is an integer b such that ab ≡ 1 (mod m). This means that ab − 1 =
mk, ab − km = 1 for some integer k. Let d = gcd(a,m). Then a = da′,m = dm′ for some natural
a′,m′. Hence 1 = ab − km = da′b − kdm′ = d(a′b − km′). This means that d divides 1 and hence
d = 1. �


