- (1) Let $f: [0,1] \to R$ be integrable on [0,1]. Let $F(x) = \int_0^x f(t) dt$. Show that F is continuous on [0, 1].
- (2) Let $F(x) = \int_{2x}^{x^2} \sin(e^{tx}) dt$. Show that F(x) is C^1 and find the formula for F'(x). (3) Give an example of a function $f: [0,1] \times [0,1] \to R$ such that f is not integrable but $\int_0^1 (\int_0^1 f(x, y) dy) dx$ exists. (4) Let $Q = [0, 1] \times [0, 1]$ Let $f: Q \to R$ be defined as follows

 $f(x,y) = \begin{cases} 1/q \text{ if } x = p/q \text{ where p,q are positive integers with no common factor and } y \text{ is rational} \\ 0 \text{ otherwise} \end{cases}$

- (a) Show that $\int_{Q} f$ exists and compute it.
- (b) Compute $\overline{\int}_{[0,1]} f(x,y) dy$ and $\underline{\int}_{[0,1]} f(x,y) dy$ for any $x \in [0,1]$.
- (c) verify Fubini's theorem for f.

(5) Compute the volume of the ball of radius r in \mathbb{R}^3 .

Extra Credit. To be written up and handed in separately from the rest of the homework.

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be \mathbb{C}^1 where n < m. Show that interior of $f(\mathbb{R}^n)$ is empty.