(1) let $f: R^{n} \rightarrow R^{n}$ be a diffeomorphism. let $A \subset R^{n}$ be any subset.

Prove that $f(b r(A))=b r(f(A))$.
(2) Let $n>1$. Give an example of an $n \times n$ matrix A which preserves volume but is not orthogonal.
(3) Prove that isometries of R^{n} form a group under the composition.
(4) let V be a finite dimensional vector space over R. Let e_{1}, \ldots, e_{n} be a basis of V. look at the dual elements $e_{i}^{*} \in V^{*}$ defined by

$$
e_{i}^{*}\left(e_{j}\right)=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right.
$$

Prove that $e_{1}^{*}, \ldots, e_{n}^{*}$ span V^{*}.
(5) prove that $\int_{(-\infty+\infty)}^{e x t} e^{-x^{2}} d x=\sqrt{\pi}$.

Hint: Show that $\left.\left(\int_{(-\infty+\infty)}^{e x t} e^{-x^{2}} d x\right)\left(\int_{(-\infty+\infty)}^{e x t}\right)^{-y^{2}} d y\right)=\pi$
(6) Let V be a finite dimensional vector space over R. Let $\langle\cdot, \cdot\rangle$ be an inner product on V. Let $\mathcal{L}(V, V)$ be the space of linear maps from V to V and $\mathcal{T}^{2}(V)$ be the space of 2-tensors on V. Consider the following map $\phi: \mathcal{L}(V, V) \rightarrow \mathcal{T}^{2}(V)$ given by the formula $\phi(A)(v, w)=\langle A(v), w\rangle$
(a) Prove that ϕ is an isomorphism.
(b) Prove that A is symmetric if and only if $\phi(A)$ is symmetric.
(c) Note that $T=\langle\cdot, \cdot\rangle$ is a 2 -tensor. Find $\phi^{-1}(T)$.

