- (1) let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism. let $A \subset \mathbb{R}^n$ be any subset. Prove that f(br(A)) = br(f(A)).
- (2) Let n > 1. Give an example of an $n \times n$ matrix A which preserves volume but is not orthogonal.
- (3) Prove that isometries of \mathbb{R}^n form a group under the composition.
- (4) let V be a finite dimensional vector space over R. Let e_1, \ldots, e_n be a basis of V. look at the dual elements $e_i^* \in V^*$ defined by

$$e_i^*(e_j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

- Prove that e_1^*, \ldots, e_n^* span V^* . (5) prove that $\int_{(-\infty+\infty)}^{ext} e^{-x^2} dx = \sqrt{\pi}$. *Hint:* Show that $(\int_{(-\infty+\infty)}^{ext} e^{-x^2} dx) (\int_{(-\infty+\infty)}^{ext} e^{-y^2} dy) = \pi$ (6) Let V be a finite dimensional vector space over R. Let $\langle \cdot, \cdot \rangle$ be an inner product on V. Let $\mathcal{L}(V, V)$ be the space of linear maps from V to V and $\mathcal{T}^2(V)$ be the space of 2-tensors on V. Consider the following map $\phi: \mathcal{L}(V, V) \to \mathcal{T}^2(V)$ given by the formula $\phi(A)(v,w) = \langle A(v), w \rangle$
 - (a) Prove that ϕ is an isomorphism.
 - (b) Prove that A is symmetric if and only if $\phi(A)$ is symmetric.
 - (c) Note that $T = \langle \cdot, \cdot \rangle$ is a 2-tensor. Find $\phi^{-1}(T)$.