(1) let T be a k-tensor on V. Prove that T is alternating if and only if $T\left(v_{1}, \ldots v_{k}\right)=0$ for any $v_{1}, \ldots v_{k}$ such that $v_{i}=v_{j}$ for some $i \neq j$.
(2) Let T be a 2 -tensor on V.

Prove that there exist unique tensors T_{1}, T_{2} such that T_{1} is alternating, T_{2} is symmetric and $T=T_{1}+T_{2}$
(3) let $\sigma \in S_{k+l}$ be the following permutation

$$
\left(\begin{array}{cccccc}
1 & \ldots & k & k+1 & \ldots & k+l \\
l+1 & \ldots & l+k & 1 & \ldots & l
\end{array}\right)
$$

Prove that $\operatorname{sign}(\sigma)=(-1)^{k l}$.
(4) Let $e_{1}, \ldots e_{n}$ be a basis of a vector space V.

Let $T=\left(e_{1}^{*}+e_{3}^{*}\right) \otimes e_{1}^{*}$ and $S=\left(e_{1}^{*}+e_{2}^{*}\right) \otimes e_{2}^{*}$.
Compute $T \otimes S$ and $\operatorname{alt}(T \otimes S)$.
Extra Credit. Compute the dimension of the space of symmetric ktensors on a vector space V.

Suppose $\operatorname{dim} V>1$ and $k>2$. Is it true that any k tensor can be written as a sum of a symmetric and an alternating tensor?

