- (1) let T be a k-tensor on V. Prove that T is alternating if and only if $T(v_1, \ldots v_k) = 0$ for any $v_1, \ldots v_k$ such that $v_i = v_j$ for some $i \neq j$.
- (2) Let T be a 2-tensor on V. Prove that there exist unique tensors T_1, T_2 such that T_1 is alter-
- nating, T_2 is symmetric and $T = T_1 + T_2$ (3) let $\sigma \in S_{k+l}$ be the following permutation

(1	 k	k + 1	 k+l
$\begin{pmatrix} 1\\ l+1 \end{pmatrix}$	 l+k	1	 ι)

Prove that $sign(\sigma) = (-1)^{kl}$. (4) Let $e_1, \ldots e_n$ be a basis of a vector space V. Let $T = (e_1^* + e_3^*) \otimes e_1^*$ and $S = (e_1^* + e_2^*) \otimes e_2^*$. Compute $T \otimes S$ and $alt(T \otimes S)$.

Extra Credit. Compute the dimension of the space of symmetric ktensors on a vector space V.

Suppose dimV > 1 and k > 2. Is it true that any k tensor can be written as a sum of a symmetric and an alternating tensor?