- (1) Let e_1, \ldots, e_n be a basis of a vector space V. Let $\eta, \theta \in \Lambda^k(V)$. prove that $\eta = \theta$ iff $\eta(e_{i_1}, \ldots, e_{i_k}) = \theta(e_{i_1}, \ldots, e_{i_k})$ for any $1 \le i_1 < i_2 < \ldots < i_k$.
- for any $1 \le i_1 < i_2 < \ldots < i_k$. (2) prove that $\det(AB) = \det(A) \cdot \det(B)$ for any $n \times n$ matrices A, B. $Hint: \text{Fix } B \text{ and consider } f(A) = \det(AB)$. Use that $\dim \Lambda^n(R^n) = 1$.
- (3) Let F be a smooth vector field on \mathbb{R}^3 . Show that div(curl(F)) = 0