- (1) Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $f(x, y, z) = (x + y \sin(2z), xe^z, \sqrt{1 + x^2 + y^2})$. Let $\omega = zdx \wedge dy$. Compute $f^*(\omega)$.
- (2) Prove that if U is an open set in \mathbb{R}^n star shaped with respect to a point $a \in U$ then any closed form on U is exact.
- (3) Give a careful proof of the fact mentioned in class: if $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ are smooth then $(g \circ f)^* = f^* \circ q^*$.
- (4) Give a careful proof of the following fact mentioned in the book. Let $\omega = -\frac{y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ be a form on $R^2 \setminus \{(0,0)\}$
 - (a) Verify that $d\omega = 0$.
 - (b) Give a careful proof of the following fact mentioned in the book: ω is not exact.

Hint: Look at polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ on $R^2 \setminus R_+$. Here $R_+ = \{(x, 0) \text{ where } x \ge 0\}$, $r > 0, 0 < \theta < 2\pi$. Show that if $\omega = df$ then $f(r \cos \theta, r \sin \theta) = \theta + const$ in polar coordinates. obtain a contradiction with continuity of f on R_+ .

Extra Credit: John Nash's Problem.

Is it true that every closed 1-form on $\mathbb{R}^3 \setminus \{(0,0,0)\}$ is exact?