- (1) let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be open. Show that $U \times V \subset \mathbb{R}^{n+m}$ is open.
- (2) let $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ be closed. Show that $A \times B \subset \mathbb{R}^{n+m}$ is closed.
- (3) Given a set $A \subset \mathbb{R}^n$ and a point $p \in \mathbb{R}^n$ we say that p is a *limit point* of A if there exists a sequence of points $p_n \in A$ such that $p_n \neq p$ for any n and $p_n \to p$ as $n \to \infty$.
 - (a) Show that if A is closed then A contains every limit point of A.
 - (b) is it true that every boundary point of A is a limit point of A? If yes, prove it. if now, give a counterexample.
 - (c) is it true that every limit point of A is a boundary point of A? If yes, prove it. if now, give a counterexample.
 - (d) Give an example of a closed set for which every limit point is a boundary point.
- (4) let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous map. Is it true that image of every closed set under f is closed? prove or give a counterexample.
- (5) Let $\{p_k\}_{k=1}^{\infty} \in \mathbb{R}^n$. Prove that $p_k \to p$ as $k \to \infty$ if and only if $\lim_{k\to\infty} |p_k p| = 0$.
- (6) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$. Suppose f is continuous at p and g is continuous at f(p). Using the definition prove that $g \circ f$ is continuous at p.

Extra Credit Problem (to be written up and submitted separately)

Let $A \subset \mathbb{R}^n$ satisfy the property that for every sequence $p_n \in A$ there is a convergent subsequence $p_{n_k} \to p$ and $p \in A$. Prove that A is compact.