(1) Let $M \subset R^{n}$ be a k-manifold. Let X be a smooth vector field on R^{n}. For any $p \in M$ let $X^{T}(p)$ be the result of the orthogonal projection of $X(p)$ onto $T_{p} M$.

Prove that X^{T} is a smooth vector field on M.
(2) Let $M \subset R^{3}$ be given by $\{z=x+y-2\} \cap\left\{x^{2}+y^{2}-z^{2}=0\right\}$. Show that M is a manifold and find $T_{p} M$ for $p=(3,4,5)$.
(3) let $f: R^{n} \rightarrow R$ be C^{∞} and let $c \in R$ be a regular value. let $M=$ $\{f=c\}$. We know that M is an $n-1$-manifold. Show that M is orientable.

