- (1) Let $M \subset \mathbb{R}^n$ be a k-manifold. Let X be a smooth vector field on \mathbb{R}^n . For any $p \in M$ let $X^T(p)$ be the result of the orthogonal projection
- of X(p) onto T_pM . Prove that X^T is a smooth vector field on M. (2) Let $M \subset R^3$ be given by $\{z = x + y 2\} \cap \{x^2 + y^2 z^2 = 0\}$. Show that M is a manifold and find T_pM for p = (3, 4, 5).
- (3) let $f: \mathbb{R}^n \to \mathbb{R}$ be \mathbb{C}^∞ and let $c \in \mathbb{R}$ be a regular value. let M = $\{f = c\}$. We know that M is an n-1-manifold. Show that M is orientable.