(1) Give a careful proof of the following fact mentioned in class. Let M be a manifold with boundary in \mathbb{R}^n . Let $p \in \partial M$. Let $n \in T_p(M)$ be a vector normal to $T_p \partial M$. let $f: W \to \mathbb{R}^n$ be a parametrization of M near p (here W is an open set in \mathbb{R}^k) such that $f(W \cap \mathbb{R}^k_+) = M \cap U$ and $f(W \cap \mathbb{R}^{k-1} \times \{0\}) = \partial M \cap U$. Let p = f(q). Suppose n is "outward" with respect to f, i.e. $n = df_q(v)$ and $v = (v_1, \ldots, v_k)$ with $v_k < 0$.

Prove that n is "outward" with respect to any other parametrization of M near p.

- (2) Let M^k be a manifold in \mathbb{R}^n . Show that for every $p \in M$ there exists an open set $U \subset \mathbb{R}^n$ containing p such that $U \cap M$ admits smooth vector fields X_1, \ldots, X_k tangent to M such that for every $x \in U \cap M$, the vectors $X_1(x), \ldots, X_k(x)$ are orthonormal.
- the vectors $X_1(x), \ldots, X_k(x)$ are orthonormal. (3) Let $M = S^2 = \{x^2 + y^2 + z^2 = 1\}$ in \mathbb{R}^3 . Let $f \colon \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = xy + z^2$. Find the minimum and the maximum of F on M.
- (4) Let $M = \{x^2 + y^2 + z^2 \leq 1\}$ in R^3 . Consider the induced orientation on ∂M and find a positive basis of $T_p \partial M$ at p = (1, 0, 0). Further, let $N = S^2_+ = \{(x, y, z) | \text{ such that } x^2 + y^2 + z^2 = 1$ and $z \geq 0\}$. Consider the orientation on N coinciding with the orientation on $S^2 = \partial M$. Consider ∂N with the induced orientation from N. Find a positive basis of $T_p \partial N$ for p = (1, 0, 0).
- (5) Let *M* be the cylinder $\{(x, y, z) | \text{ such that } x^2 + y^2 = 1 \text{ and } 0 \le z \le 1\}$ in \mathbb{R}^3 . Let $\omega = zdx$. Fix an orientation on *M* such that the $e_2 = (0, 1, 0), e_3 = (0, 0, 1)$ give a positive basis of T_pM for p = (1, 0, 0). Compute $\int_M d\omega$ and $\int_{\partial M} \omega$ and verify that they are equal.