- (1) Finish the proof of the theorem from class: If $f: A \to R^m$ is continuous where $a \subset R^n$, then for any open set $U \subset R^m$, there is an open set $V \subset R^n$ such the $f^{-1}(U) = V \cap A$.
- (2) Finish the proof of theorem from class: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ satisfies the following property.

For any sequence $x_k \to p$ we have $f(x_k) \to f(p)$.

Then f is continuous at p.

Hint: Assume that f is not continuous at p and construct a sequence $x_k \to p$ such that $f(x_k) \not\to f(p)$.

Extra Credit Problem (to be written up and submitted separately)

Let $A = \{x \in \mathbb{R}^n | \text{such that } 1 \leq |x| \leq 2\}$ and $f \colon A \to \mathbb{R}$ be a continuous function. Let $M = \sup_{a \in A} f(a)$ and $m = \inf_{a \in A} f(a)$. prove that F(A) = [m, M].