(1) Give an ϵ - δ proof of the theorem mentioned in class: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}$ satisfy

 $\lim_{x \to a} f(x) = 0 \text{ and } g(x) \text{ is bounded on } B(a, \delta) \text{ for some } \delta > 0$

then $\lim_{x\to a} g(x)f(x) = 0$

(2) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ satisfy $\lim_{x\to 0} f(x) = L$ prove that for any line passing through the origin the limit of f(x) as $x \to 0$ along this line exists and is equal to L. More precisely. For any vector $x \in \mathbb{R}^n$, $x \neq 0$ consider the line $t \cdot x$ where $t \in \mathbb{R}$. Prove that

$$\lim_{t\to 0} f(tx) = L$$

Extra Credit Problem (to be written up and submitted separately) Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist everywhere but f(x, y) is not differentiable at (0, 0).