(1) Let $f(r, \theta)=(r \cos \theta, r \sin \theta)$ be a map $f: U \rightarrow R^{2}$ where $U=$ $\{(r . \theta) \mid r>0,-\pi / 2<\theta<\pi / 2\}$.

Let $g(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan (y / x)\right)$ be a map $g: V \rightarrow R^{2}$ where $V=\{(x, y) \mid x>0\}$.

Show that $f: U \rightarrow V$ is a bijection with $f^{-1}=g$. Compute $d f(r, \theta), d g(x, y)$ and verify that $\left[d g(f(r, \theta)]=[d f(r, \theta)]^{-1}\right.$.
(2) Let $\left.f=f^{1}(x, y), f^{2}(x, y)\right): R^{2} \rightarrow R^{2}$ be a C^{1} map satisfying $f(x, 0)=$ $\left(\cos x, x^{2}\right)$. Suppose f^{-1} exists. can it be differentiable at $(1,0)$?

