(1) Let $f(r,\theta) = (r\cos\theta, r\sin\theta)$ be a map $f: U \to R^2$ where $U = \{(r.\theta) | r > 0, -\pi/2 < \theta < \pi/2\}.$

Let $g(x,y) = (\sqrt{x^2 + y^2}, \arctan(y/x))$ be a map $g: V \to R^2$ where $V = \{(x,y) | x > 0\}.$

Show that $f: U \to V$ is a bijection with $f^{-1} = g$. Compute $df(r,\theta), dg(x,y)$ and verify that $[dg(f(r,\theta))] = [df(r,\theta)]^{-1}$.

(2) A set $A \subset \mathbb{R}^n$ is called *convex* if for any points $x, y \in A$, the straight line segment from x to y is contained in A.

Prove that the ball $B(0,1) = \{x \in \mathbb{R}^n | \text{ such that } |x| < 1\}$ is convex.

Hint: Parametrize the line segment from x to y by

z(t) = x + t(y - x) where $0 \le t \le 1$ and prove that $\sqrt{\langle z(t), z(t) \rangle} = |z(t)| < 1$ for any $t \in [0, 1]$.

(3) A map $h: \mathbb{R}^n \to \mathbb{R}^n$ is called a *diffeomorphism* if h is 1-1 and onto and both h and h^{-1} are differentiable.

Let $U \subset R^n$ be open and $f: U \to R^n$ be any map. let $h: R^n \to R^n$ be a diffeomorphism.

- (a) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear map. Show that T is a diffeomorphism;
- (b) f is continuous if and only if $h \circ f$ is continuous;
- (c) f is differentiable if and only if $h \circ f$ is differentiable;
- (d) f is 1-1 if and only if $h \circ f$ is 1-1;
- (e) f(U) is open if and only if $(h \circ f)(U)$ is open;
- (f) Let $f: U \to f(U)$ be 1-1 and f(U) is open. Show that f^{-1} is differentiable if and only if $(h \circ f)^{-1}$ is differentiable.
- (4) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be \mathbb{C}^1 , 1-1 and onto. Assume df(x) is invertible for any $x \in \mathbb{R}^n$. Prove that f^{-1} is \mathbb{C}^1 .
- (5) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = \sin(xyz) + e^{2x+y(z-1)}$. show that the level set $\{f = 1\}$ can be solved as x = x(y, z) near (0, 0, 0) and compute $\frac{\partial x}{\partial y}(0, 0)$ and $\frac{\partial x}{\partial z}(0, 0)$
- (6) let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f_1(x, y, z) = \sin(x+y) x + 2z$, $f_2(x, y, z) = y + \sin z$ Show that the level set $\{f_1 = 0, f_2 = 0\}$ can be solved near (0, 0, 0) as y = y(x), z = z(x) and compute $\frac{\partial y}{\partial x}(0)$ and $\frac{\partial z}{\partial x}(0)$

Extra Credit: Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$ be \mathbb{C}^1 where m < n. prove that f can not be 1-1 on U.