- (1) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be \mathbb{C}^2 where n > m. as usual we denote coordinates in \mathbb{R}^n by (x, y) where $x \in \mathbb{R}^{n-m}, y \in \mathbb{R}^m$. Let $p = (x_0, y_0) \in \mathbb{R}^n$ and c = f(p). Suppose the matrix $\frac{\partial f}{\partial y}(p)$ is invertible. Let y(x) be the implicit function given by solving f(x, y(x)) = c near p. Show that y(x) is \mathbb{C}^2 .
- (2) let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f_1(x, y, z) = x + 2y + \sin(z + y)$, $f_2(x, y, z) = x + e^{xy} + z$. Show that the level set $\{f_1 = 0, f_2 = 1\}$ can be solved near (0, 0, 0) as x = x(z), y = y(z) and compute $\frac{\partial x}{\partial z}(0)$ and $\frac{\partial y}{\partial z}(0)$.