- (1) Let $f: Q \to \mathbb{R}$ be integrable. Prove that |f| is integrable
- Prove that |f| is integrable and $|\int_Q f| \leq \int_Q |f|$. (2) Let $p \in \mathbb{R}^n$ and $B(p, R) \subset \mathbb{R}^n$ be the ball of radius R centered a p. Let $f: B(p, R) \to \mathbb{R}$ be C^1 with $|D_i f(x)| \leq C$ for any $i = 1, \ldots n$ and any $x \in B(p, R)$.

Prove that f is uniformly continuous on B(p, R).

- (3) seam
 - (a) Let $f(x) = \int_{x^2}^{3x} \sqrt{t^3 + x^3} dt$ Find the expression for f'(x). You **DO NOT** need to evaluate the integral in that expression.
 - (b) Let $f(x) = \int_0^{h(x)} (g(x,t))^4 dt$ where h and g are C^1 . Find the formula for f'(x).
 - (c) Let $f(x) = \int_a^{\int_a^b g(x,y)dy} g(x,y)dy$ where g is C^1 . Find the formula for f'(x).
- (4) Let $f: [0,1] \to [01]$ be integrable. Consider the following function $f: Q = [0,1] \times [0,1] \to \mathbb{R}$

$$F(x,y) = \begin{cases} 1 \text{ if } y < f(x) \\ 0 \text{ if } y \ge f(x) \end{cases}$$

Prove that F is integrable over Q and $\int_Q F = \int_0^1 f$. (5) Let $f: [0,1] \times [0,4] \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} xy^2 \text{ if } y < x^2\\ x + 2y \text{ if } y \ge x^2 \end{cases}$$

Verify that f is integrable and compute $\int_Q f$ in two different ways using Fubini's theorem.

(6) Let Q be a rectangle in \mathbb{R}^n . Let $S \subset Q$. consider the characteristic function of S on Q given by

$$\chi_S(x) = \begin{cases} 1 \text{ if } x \in S \\ 0 \text{ if } x \notin S \end{cases}$$

prove that $\chi_S(x)$ is integrable if and only if bd(S) has measure 0. *Hint:* Show that bd(S) is the set of points of discontinuity of $\chi_S(x)$.

Extra Credit Problem (to be written up and submitted separately)

Problem 3c on page 103.