MAT 257Y

Practice Term Test 1

- (1) Find the partial derivatives of the following functions (a) $f(x, y, z) = \sin(x \sin(y \sin z))$
 - (b) $f(x, y, z) = x^{yz^2}$
- (2) give an example of a nonempty set A such that the set of limit points of A is the same as the set of boundary points of A.
- (3) Let $A, B \subset \mathbb{R}^n$ be compact. Prove that the set $A + B = \{a + b | a \in A, b \in B\}$ is compact.
- (4) show that the intersection of arbitrary collection of closed sets is closed.
- (5) show that $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if $f^{-1}(A)$ is closed for any closed $A \subset \mathbb{R}^m$.
- (6) Let \mathbb{R}^{n^2} be the space of all $n \times n$ matrices. Consider the map $f: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$ given by the formula
 - $f(A) = A \cdot A^T.$

Here A^T means the transpose of A.

Show that f is differentiable everywhere and compute df(A).

Hint: use that $df(A)(X) = D_X f(A)$.

(7) Let $f = (f_1, f_2) \colon R^2 \to R^2$ be given by the formula $f_1(x, y) = x + y + y^3 + 1$, $f_2(x, y) = xe^y + 2$

Show that there an open set U containing (0,0) such that $f: U \to f(U)$ is a bijection and f^{-1} is differentiable on f(U) and compute $df^{-1}(1,2)$.

(8) Let $f(x,y) = x^y$ be defined on $U = \{(x,y)|x>0\}$. Verify that

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$$