MAT 257Y

Practice Term Test 2

(1) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be \mathbb{C}^1 where n > m. Suppose $[df(x_0)]$ has rank m.

Show that there exists $\epsilon > 0$ such that for any $y \in B(f(x_0), \epsilon)$ there exists $x \in \mathbb{R}^n$ such that f(x) = y.

(2) Let A be a rectangle in \mathbb{R}^n and let $S \subset A$ be a set of measure zero which is Jordan measurable. Show that S has content zero.

Hint: Use that $\int_A \chi_S$ exists and must be equal to zero.

(3) Let $f: [0,1] \times [0,1] \to R$ be continuous. Show that

$$\int_{0}^{1} (\int_{0}^{x} f(x, y) dy) dx = \int_{0}^{1} (\int_{y}^{1} f(x, y) dx) dy$$

(4) Let
$$f: R^2 \to R$$
 be C^2 .

Prove that $F(x) = \int_0^1 f(x, y) dy$ is C^2 on R.

- (5) Prove that the union of countably many sets of measure zero has measure 0.
- (6) let $S = \{(x, y) \in R^2 | x^2 + y^2 \le 1, y \ge |x|\}.$ Compute $\int_S y.$
- (7) Let $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$ be rectangles. let $f: A \times B \to \mathbb{R}$ be integrable.

Prove that there is a set $S \subset A$ of measure 0 such that for any $x \in A \setminus S$ the integral $\int_B f(x, y) dy$ exists.

(8) Let $f: [-1,1] \times [-1,1] \to R$ be a continuous function. Suppose f(-x,y) = -f(x,y) for any x, y. Prove that $\int_{[-1,1] \times [-1,1]} f = 0$. *Hint: use Fubini's theorem.*