MAT 257Y

Practice Term Test 3
(1) Let A be a Jordan measurable set.
prove that for any $\epsilon>0$ there exists a compact Jordan measurable set $C \subset U$ such that $\int_{A \backslash C} 1<\epsilon$.

Hint: Consider the lower Riemann sum for $\int_{A} 1$.

Solution

Let P be a partition such that $\int_{A} 1-L(f, P)<\epsilon$. Then

$$
L(f, P)=\sum_{Q \in P} m_{Q} 1 \operatorname{vol}(Q)=\sum_{Q \in P, Q \subset A} 1 \cdot \operatorname{vol}(Q)=
$$

$\int_{C} 1$ where $C=\cup_{Q \in P, Q \subset A Q}$.
This means that $\int_{A} 1-\int_{C} 1=\int_{A \backslash C} 1<\epsilon$.
(2) Let ϕ_{i} be a partition of unity on an open set U. let $K \subset U$ be a compact set.

Prove that all but finitely many ϕ_{i} vanish on K.

Solution

By definition of a partition of unity, for every point $p \in K$ there exists $\epsilon_{p}>0$ such that all but finitely many ϕ_{i} vanish on $B\left(p, \epsilon_{p}\right)$.
We have that $\cup_{p \in K} B\left(p, \epsilon_{p}\right) \supset K$. By compactness of K we can choose a finite cover of K by the balls $B\left(p_{i}, \epsilon_{i}\right)$ and the result follows.
(3) Let $c:[0,1] \rightarrow\left(R^{n}\right)^{n}$ be continuous. Suppose that $c^{1}(t), \ldots, c^{n}(t)$ is a basis of R^{n} for any t.
Prove that $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ and $\left(c^{1}(1), \ldots, c^{n}(1)\right)$ have the same orientation.

Solution

Let $f(t)=\operatorname{det}\left[c^{1}(t), \ldots, c^{n}(t)\right]$. Then $f(t)$ is continuous and never zero. therefore $f(t)>0$ for all t or $f(t)<0$ for all t by the intermediate value theorem. In either case $f(1) / f(0)>0$. Let A be the transition matrix from $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ to $\left(c^{1}(1), \ldots, c^{n}(1)\right)$. then $A=\left[c^{1}(0), \ldots, c^{n}(0)\right]^{-1}\left[c^{1}(1), \ldots, c^{n}(1)\right]$. hence
$\operatorname{det}(A)=f(1) / f(0)>0$ which means that $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ and $\left(c^{1}(1), \ldots, c^{n}(1)\right)$ have the same orientation.
(4) Let C be the triangle in R^{2} with vertices $(0,0),(1,2),(-1,3)$

Compute $\int_{C} x+y$.
Hint: use a linear change of variables.

Solution

Let's make a change of variable

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

or $x=u-v, y=2 u+3 v$. we have that $\operatorname{det}\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]=$
5. Therefore $\int_{C} x+y=\int_{U} 5((u-v)+(2 u+3 v))$ where $U=\{(u, v) \mid u>0, v>0, u+v<1\}$. Therefore using Fubini's theorem we compute

$$
\begin{aligned}
& \int_{U} 5((u-v)+(2 u+3 v))=\int_{0}^{1} \int_{0}^{1-u} 5(3 u+2 v) d v d u= \\
= & \left.5 \int_{0}^{1}\left(3 u v+v^{2}\right)\right|_{0} ^{1-u} d u=5 \int_{0}^{1} 3 u(1-u)+(1-u)^{2} d u= \\
= & 5 \int_{0}^{1}-2 u^{2}+u+1 d u=\left.5\left(-2 / 3 u^{3}+u^{2} / 2+u\right)\right|_{0} ^{1}=25 / 6
\end{aligned}
$$

(5) Let $T \in \mathcal{T}^{2}(V)$.

Prove that $\operatorname{Alt}(T)=0$ if and only if T is symmetric.
Is the same true if $T \in \mathcal{T}^{3}(V)$?

Solution

If $T \in \mathcal{T}^{2}(V)$ then by definition $\operatorname{Alt}(T)(u, v)=$ $\frac{1}{2}(T(u, v)-T(v, u))$. Thus $\operatorname{Alt}(T)=0$ mean $T(u, v)=$ $T(v, u)$ for any $u, v \in V$, i.e. T is symmetric.

The same is false if $k>2$. For example $T=e_{1}^{*} \otimes$ $e_{2}^{*} \otimes e_{3}^{*}+2 e_{2}^{*} \otimes e_{1}^{*} \otimes e_{3}^{*}+e_{2}^{*} \otimes e_{3}^{*} \otimes e_{1}^{*}$ is not symmetric. However, $\operatorname{Alt}(T)=\frac{1}{6}\left(e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}-2 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}+e_{1}^{*} \wedge\right.$ $\left.e_{2}^{*} \wedge e_{3}^{*}\right)=0$.
(6) Let $T \subset \mathcal{T}^{2}(V)$. Let $T_{i j}$ be coordinates of T with respect to basis e_{1}, \ldots, e_{n} and $\tilde{T}_{i j}$ be coordinates of T with respect to basis $\tilde{e}_{1}, \ldots, \tilde{e}_{n}$. Let A be the transition matrix from e to \tilde{e}.
Prove that $[\tilde{T}]=A^{t}[T] A$.

Solution

We have $\tilde{e}=e \cdot A$ so that $\tilde{e}_{i}=\sum_{j} e_{j} A_{j i}$. Therefore $\tilde{T}_{i j}=T\left(\tilde{e}_{i}, \tilde{e}_{j}\right)=T\left(\sum_{k} e_{k} A_{k i}, \sum_{l} e_{l} A_{l j}\right)=\sum_{k, l} A_{k i} T\left(e_{k}, e_{l}\right) A_{l j}=$ $\sum_{k, l} A_{i k}^{t} T_{k l} A_{l j}=\left(A^{t} T A\right)_{i j}$
(7) Let $f: R^{n} \rightarrow R^{n}$ be a C^{∞} diffeomorphism. Let $\omega=$ $d x^{1} \wedge \ldots \wedge d x^{n}$. Suppose $f^{*} \omega=\omega$.

Prove that $\operatorname{vol} U=\operatorname{vol} f(U)$ for any bounded open set U.

Solution

by a theorem from class $f^{*} \omega=\operatorname{det}[d f] \omega$. this means that $\operatorname{det}[d f]=1$ and the statement follows by the change of variables theorem.
(8) Let $f: R^{2} \rightarrow R^{3}$ be given by $f(x, y)=\left(x^{2}+\cos (x y), e^{2 x y}, x y^{2}\right)$. let $\omega=e^{x y} d x \wedge d z+2 x d y \wedge d z-\sin (x y) d y \wedge d z$

Compute $f^{*} \omega$.

Solution

$$
\begin{aligned}
& \quad f^{*} \omega=e^{\left(x^{2}+\cos (x y)\right)\left(e^{2 x y}\right)} d\left(x^{2}+\cos (x y)\right) \wedge d\left(x y^{2}\right)+ \\
& {\left[2\left(x^{2}+\cos (x y)\right)-\sin \left(\left(x^{2}+\cos (x y)\right) e^{2 x y}\right)\right] d\left(e^{2 x y}\right) \wedge} \\
& d\left(x y^{2}\right)=e^{\left(x^{2}+\cos (x y)\right)\left(e^{2 x y}\right)}((2 x-y \sin (x y)) d x-x \sin (x y) d y) \wedge \\
& \left(y^{2} d x+2 x y d y\right)+\left[2\left(x^{2}+\cos (x y)\right)-\sin \left(\left(x^{2}+\cos (x y)\right) e^{2 x y}\right)\right]\left(2 y e^{2 x y} d x+\right. \\
& \left.2 x e^{2 x y} d y\right) \wedge\left(y^{2} d x+2 x y d y\right)=e^{\left(x^{2}+\cos (x y)\right)\left(e^{2 x y}\right)}((2 x- \\
& \left.y \sin (x y)) 2 x y+x \sin (x y) y^{2}\right) d x \wedge d y+\left[2\left(x^{2}+\cos (x y)\right)-\right. \\
& \left.\sin \left(\left(x^{2}+\cos (x y)\right) e^{2 x y}\right)\right]\left[2 y e^{2 x y} 2 x y-2 x e^{2 x y} y^{2}\right] d x \wedge d y
\end{aligned}
$$

