
Solution to Term Test 2

(1) (15 pts) Let f = (f1, f2) : R3 → R2 be a C1 map
such that f(0, 0, 0) = (0, 0), [df1(0, 0, 0)] = [1, 0, 2],
[df2(0, 0, 0)] = [−1, 1, 1]. Denote the standard coor-
dinates in R3 by (x1, x2, y). Further, denote (x1, x2)
by x.

Show that near the point (0, 0, 0) the level set {(x, y) ∈
R3| f(x, y) = 0} can be written as a graph of a dif-
ferentiable function x = g(y) and find g′(0).

Solution

First we look at the matrix [∂f∂x(0)] =

(
1 0
−1 1

)
This matrix has nonzero determinant hence g(y)

exists by Implicit Function Theorem. To compute
g′(0) we differentiate the equality f(g(y), y) = 0. By
the chain rule we get ∂f

∂x(0)g′(0) + ∂f
∂y (0) = 0 or(

1 0
−1 1

)
· g′(0) +

(
2
1

)
= 0

Solving this linear system we find g′(0) =

(
−2
−3

)
.

(2) (15 pts) Let A be a rectangle in Rn and let S ⊂ A
be closed.

Show that S has content 0 if an only if it has mea-
sure 0.

Solution

Suppose S has measure zero. Since it’s closed and
bounded (as a subset of a rectangle) it is compact.
Let ε > 0. Then there exists a countable cover of
S by rectangles Qi such that

∑∞
i=1 volQi < ε/2. For

every Qi there exists a slightly bigger open rectangle
Q′i such that Qi ⊂ Q′i and volQ′i < 2volQi. By com-
pactness of S we can choose a finite cover Q′1, . . . , Q

′
N

such that S ⊂ ∪Ni=1Q
′
i.
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Then
∑N

i=1 volQ′i <
∑∞

i=1 volQ′i < 2
∑∞

i=1 volQi <
2ε/2 = ε. Since ε > 0 is arbitrary this means that S
has content 0.

The other direction is obvious by the definition of
a set of measure zero.

(3) (15 pts) Mark True or False. If true, give a proof. If
false, give a counterexample.
(a) If S ⊂ Rn has content 0 then S is bounded.
(b) If S ⊂ Rn has measure 0 then br(S) also has

measure 0.
(c) br(S1∩S2) ⊂ br(S1)∩br(S2) for any sets S1, S2 ⊂

Rn.

Solution

(a) True. If S has finite content it can be covered
by a finite collection of rectangles and hence it is
bounded.

(b) False. Counterexample: S = Q ∩ [0, 1]. then S
has measure zero but br(S) = [0, 1] does not have
measure zero.

(c) False. Counterexample: Take S1 and S2 to be
two intersecting disks in R2.

(4) (15 pts) Let f : [0, 1] × [0, 1] → R be defined by
f(x, y) = x+2y. Let P be the partition {0, 1/2, 1}×
{0, 1/2, 1}. Find L(f, P ).

Solution

Let Q1 = [0, 1/2]× [0, 1/2], Q2 = [0, 1/2]× [1/2, 1],
Q3 = [1/2, 1]× [0, 1/2], Q4 = [1/2, 1]× [1/2, 1]. Then
L(f, P ) =

∑4
i=1mQi

(f)volQi = 1
4

∑4
i=1mQi

(f).
To compute mQ1

(f) we observe that for 0 ≤ x ≤
1/2, 0 ≤ y ≤ 1/2 we have x + 2y ≥ 0 + 2 · 0 =
0 = f(0, 0) hence mQ1

(f) = 0. Similarly, mQ2
(f) =

0 + 2 · 1/2 = 1 = f(0, 1/2), mQ3
(f) = 1/2 + 2 · 0 =
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1/2 = f(1/2, 0) and mQ4
(f) = 1/2 + 2 · 1/2 = 3/2 =

f(1/2, 1/2)
Hence L(f, P ) = 1

4(0 + 1 + 1/2 + 3/2) = 3/4.
(5) (15 pts) Let f : [a, b]→ R be continuous. Show that

the graph of f has content 0. Recall that the graph of
f is the set Γf = {(x, y) ∈ R2| x ∈ [a, b], y = f(x)}.

Hint: Use that f is uniformly continuous.

Solution

Solution 1. Since f is continuous on [a, b] and [a, b]
is compact, f is uniformly continuous on [a, b]. Let
ε > 0. There exists δ > 0 such that if |x1 − x2| < δ
then |f(x1) − f(x2)| < ε/2. Choose N such that
1/N < δ and let P be the partition given by xi = i/n,
i = 0, . . . , N . By uniform continuity for any x ∈
[xi−1, xi] we have |f(x)− f(xi)| < ε/2. therefore the
graph of f on [xi−1, xi] is contained in the rectangle
Qi = [xi−1, xi]× [f(xi)− ε/2, f(xi) + ε/2]. Thus the
graph of f is covered by Qis and∑N

i=1 volQi = N · (1/N) · ε = ε
Hence the graph has content 0.
Solution 2. f is continuous on [a, b] and hence it

is integrable on [a, b]. Let ε > 0. then there exists a
partition P of [a, b] such that
U(f, P )−L(f, P ) < ε. We rewrite U(f, P )−L(f, P ) =∑
Q∈P (MQ(f)−mQ(f))volQ. For any Q ∈ P observe

that the graph of f over Q is contained in the rectan-
gleQ×[mQ(f),MQ(f)] and vol(Q×[mQ(f),MQ(f)]) =
(MQ(f)−mQ(f))volQ. In other words
ε > U(f, P )−L(f, P ) =

∑
Q∈P vol(Q×[mQ(f),MQ(f)])

and hence the graph of f has content 0.
(6) (15 pts) Let A be a rectangle in Rn and let f : A→ R

be integrable over A. Let c > 0 be a constant.
Prove that

∫
A cf exists and is equal to c

∫
A f .

Solution
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Let P be any partition f A then

L(cf, P ) =
∑
Q∈P

mQ(cf)volQ

Claim: mQ(cf) = cmQ(f) for any Q and any posi-
tive c. Indeed, let m = infx∈Q f(x). Then f(x) ≥ m
for any x ∈ Q and hence Cf(x) ≥ cm for any x ∈ Q.
This means that mQ(cf) ≥ cmQ(f). applying the
above to cf and 1/c we get mQ(f) = mQ(1

ccf) ≥
1
cmQ(cf) which means that mQ(cf) = mQ(cf).

Hence

L(cf, P ) =
∑
Q∈P

mQ(cf)volQ =
∑
Q∈P

cmQ(f)volQ = cL(f, P )

Similarly U(cf, P ) = cU(f, P ). Therefore

sup
P
L(cf, P ) = sup

P
cL(f, P ) = c supL(f, P ) = c

∫
A

f

and

inf
P
U(cf, P ) = inf

P
cU(f, P ) = c inf

P
U(f, P ) = c

∫
A

f

hence cf is integrable and
∫
A cf = c

∫
A f .

(7) (10 pts) Let f : [−π/2, π/2]→ R be given by f(x) =
cosx. Let S ⊂ R3 be the solid obtained by rotating
around the x-axis the region between the graph of f
and the x-axis.

Compute volume of S.
Recall that cos2 α = 1+cos 2α

2 .

Solution

By definition, volS =
∫
S 1. Using Fubini’s theorem,

we compute.
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volS =

∫
S

1 =

∫ π/2

−π/2
(

∫
Sx

1)dx

where Sx is cross-section of S at level x, i.e it’s the
circle of radius cosx centered at 0. We have

∫
Sx

1 =

area(Sx) = π cos2 x. Therefore,

volS =

∫
S

1 =

∫ π/2

−π/2
(

∫
Sx

1)dx =

∫ π/2

−π/2
π cos2 xdx = π

∫ π/2

−π/2

1 + cos 2x

2
dx =

= π/2(x+
sin 2x

2
)|π/2−π/2 =

π2
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