Solution to Term Test 2

(1) (15 pts) Let f = (f1,f2): R* — R? be a C' map
such that £(0,0,0) = (0,0), [df1(0,0,0)] = [1,0,2],
[df5(0,0,0)] = [—1,1,1]. Denote the standard coor-
dinates in R® by (1, x9,). Further, denote (1, o)
by x.

Show that near the point (0,0, 0) the level set {(z,y) €

R3|  f(x,y) = 0} can be written as a graph of a dif-
ferentiable function = = g(y) and find ¢'(0).

Solution

First we look at the matrix [%(0)] = _11 (1)

This matrix has nonzero determinant hence ¢(y)
exists by Implicit Function Theorem. To compute
¢'(0) we differentiate the equality f(g(y),y) = 0. By

the chain rule we get g—x(O)g’(O) - %(0) =0 or

()0

Solving this linear system we find ¢'(0) = —2

-3
(2) (15 pts) Let A be a rectangle in R" and let S C A
be closed.
Show that S has content 0 if an only if it has mea-
sure 0.

Solution

Suppose S has measure zero. Since it’s closed and
bounded (as a subset of a rectangle) it is compact.
Let € > 0. Then there exists a countable cover of
S by rectangles @; such that " volQ; < €/2. For
every (); there exists a slightly bigger open rectangle
@)} such that @Q; C Q) and vol@; < 2vol@;. By com-
pactness of S we can choose a finite cover @, ..., QY
such that S c UY,Q".
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Then YV, vol@Q) < 32 vol@) < 237 volQ; <
2¢/2 = €. Since € > 0 is arbitrary this means that S
has content 0.

The other direction is obvious by the definition of
a set of measure zero.

(3) (15 pts) Mark True or False. If true, give a proof. If
false, give a counterexample.
(a) If S C R" has content 0 then S is bounded.
(b) If S C R™ has measure 0 then br(S) also has
measure 0.
(c) br(S1NSy) C br(S1)Nbr(Sz) for any sets Sy, Se C
R

Solution

(a) True. If S has finite content it can be covered
by a finite collection of rectangles and hence it is
bounded.

(b) False. Counterexample: S = @ N[0, 1]. then S
has measure zero but br(S) = [0, 1] does not have
measure zero.

(c) False. Counterexample: Take S; and S5 to be
two intersecting disks in R2.

(4) (15 pts) Let f: [0,1] x [0,1] — R be defined by

f(z,y) = x+2y. Let P be the partition {0,1/2,1} x

{0,1/2,1}. Find L(f, P).

Solution

Let Q1 = [07 1/2] X [07 1/2]7 Q2 = [07 1/2] X [1/27 1]7
Qs =[1/2,1]x[0,1/2], Q4 = [1/2,1] x [1/2,1]. Then
L(f,P)= Z?:l sz‘(f)VOlQi = %Z?:l mQT(f)

To compute mg,(f) we observe that for 0 < z <
1/2,0 <y < 1/2 we have x +2y > 04+2-0 =
0 = £(0,0) hence mg,(f) = 0. Similarly, mq,(f)
04+2-1/2=1= f(0,1/2), mg,(f) =1/24+2-0 =
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1/2 = f(1/2,0) and mq,(f) =1/2+2-1/2=3/2 =
£01/2,1/2)
Hence L(f,P) = 1(0+1+1/2+3/2) = 3/4.

(5) (15 pts) Let f: [a,b] — R be continuous. Show that
the graph of f has content 0. Recall that the graph of
fistheset I'y = {(x,y) € R* =z €a,b],y= f(x)}.

Hint: Use that f is uniformly continuous.

Solution

Solution 1. Since f is continuous on [a, b] and |a, b]
is compact, f is uniformly continuous on |[a,b]. Let
€ > 0. There exists 6 > 0 such that if |z; — 29| < ¢
then |f(x1) — f(z2)] < €/2. Choose N such that
1/N < 6 and let P be the partition given by x; = i/n,
1 = 0,...,N. By uniform continuity for any x &
(-1, x;] we have |f(z) — f(z;)| < €/2. therefore the
graph of f on [z;_1,z;] is contained in the rectangle
Qi = [xi—l; a:l] X [f(.%’l) — 6/2, f(.%’z) + 6/2] Thus the
graph of f is covered by @);s and

SN volQ;=N-(1/N)-e=¢

Hence the graph has content 0.

Solution 2. f is continuous on [a,b] and hence it
is integrable on [a, b]. Let € > 0. then there exists a
partition P of [a, b] such that

U(f,P)—L(f, P) <e Werewrite U(f, P)—L(f, P) =
> 0ep(Mq(f)—mgq(f))volQ. For any @) € P observe
that the graph of f over () is contained in the rectan-

gle @x[mq(f), Mq(f)] and vol(@x[mq(f), Mq(f)]) =
(Mo(f) —mo(f))vol@. In other words
e > U(f, P=L(f, P) = ¥ gepvol@x[mo(£), Mo(£)
and hence the graph of f has content 0.
(6) (15 pts) Let A be arectanglein R" andlet f: A — R
be integrable over A. Let ¢ > 0 be a constant.
Prove that fA cf exists and is equal to cfA f.

Solution



Let P be any partition f A then
L(cf, P) ZmQ cf)vol@

QeP

Claim: mg(cf) = emg(f) for any ) and any posi-
tive c¢. Indeed, let m = inf,cq f(x). Then f(z) > m
for any x € @ and hence C f(x) > ¢m for any x € Q.
This means that mqg(cf) > cmg(f). applying the
above to c¢f and 1/c we get mq(f) = mg(icf) >

%mQ(cf) which means that mg(cf) = mQ(Cf)
Hence

L(cf, P) ZmQ cf)vol@ = Zch(f)volQ =cL(f, P)

QepP QeP
Similarly U(cf, P) = cU(f, P). Therefore

sup L(cf, P) = supcL(f, P) = csup L(f, P) = c/ f
P P A

and

i:%fU(cf,P) :i:%ch(f,P) :ci%fU(f,P) :c/Af

hence cf is integrable and fA cf = cfA f.

(7) (10 pts) Let f: [—7/2,7/2] — R be given by f(x) =
cosz. Let S C R? be the solid obtained by rotating
around the z-axis the region between the graph of f
and the z-axis.

Compute volume of S.

Recall that cos?a = %

Solution

By definition, volS = [, 1. Using Fubini’s theorem,
we compute.



/2
vol$ = / 1=/ /
/2 JS,

where S, is cross-section of S at level x, i.e it’s the
circle of radius cosz centered at 0. We have [ g 1=

areaf = 7 cos? z. Therefore,
/2 /2 /2 1 9
volS = /1 —/ / dx—/ 7rcos2xdx:7r/ md:p:
/2 JS, —7/2 —m/2 2
Sin 22 /2 2
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