Solutions to Term Test 3

k times

- (1) (15 pts) Give the following definitions
 - (a) A k-tensor on a vector space V.
 - (b) Cross product on \mathbb{R}^n .
 - (c) A partition of unity on on open set U subordinate to an open cover U_{α} .

Solution

(a) A k-tensor on a vector space V is a map $T: V \times \ldots \times V \to R$ which is linear in every variable, i.e

$$T(v_1, \dots, v_{i-1}, av'_i + bv''_i, v_{i+1}, \dots, v_k) = aT(v_1, \dots, v_{i-1}, v'_i, v_{i+1}, \dots, v_k) + bT(v_1, \dots, v_{i-1}, v''_i, v_{i+1}, \dots, v_k)$$
for any $i = 1, \dots, k$.

(b) Cross product on \mathbb{R}^n . For $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$ we define $v_1 \times \ldots \times v_n$ as the unique

vector $v \in \mathbb{R}^n$ such that $\langle v, w \rangle = \det \begin{pmatrix} v_1 \\ \cdots \\ v_{n-1} \end{pmatrix}$ for any $w \in \mathbb{R}^n$.

- (c) A partition of unity on an open set U subordinate to an open cover U_{α} is a sequence of functions $\phi_i \colon \mathbb{R}^n \to \mathbb{R}$ with the following properties
 - (i) ϕ_i is C^{∞} for any *i*.
 - (ii) For any *i* there exists α such that $supp(\phi_i) \subset U_{\alpha}$
 - (iii) $\phi_i \geq 0$ for any *i*.
 - (iv) for any $p \in U$ there exists $\epsilon > 0$ such that $B(p, \epsilon)$ intersects only finitely many $supp(\phi_i)$.
- (v) $\sum_{i=1}^{\infty} \phi_i = 1$ on U. (2) (10 pts) Let $U \subset \mathbb{R}^n$ be open. Let $f, g: U \to \mathbb{R}$ be continuous and $|f| \leq g$. Suppose $\int_{U}^{ext} g$ exists.

Prove that $\int_{U}^{ext} f$ also exists.

Solution

Let ϕ_i be a partition of unity on U. Then by definition of extended integral, $\sum_{i=1}^{\infty} \int_{U} |g|\phi_i < \infty$ Therefore $\sum_{i=1}^{\infty} \int_{U} |f| \phi_i \leq \sum_{i=1}^{\infty} \int_{U} |g| \phi_i < \infty$ and hence $\int_{U}^{ext} f$ exists by the definition. (3) (15 pts) Let e_1, e_2, e_3, e_4 be a basis of a 4-dimensional space V.

Let $\omega = Alt(e_1^* \otimes e_2^* + e_3^* \otimes e_4^*)$ and $\eta = 2e_2^* + e_3^*$. Find $\omega \wedge \eta(e_2, e_3, e_4)$.

MAT 257Y

Solution

We have $\omega = \frac{1!1!}{2!}(e_1^* \wedge e_2^* + e_3^* \wedge e_4^*)$. Hence $\omega \wedge \eta = \frac{1}{2}(e_1^* \wedge e_2^* + e_3^* \wedge e_4^*) \wedge (2e_2^* + e_3^*) = \frac{1}{2!}(e_1^* \wedge e_2^* + e_3^* \wedge e_4^*)$. $\frac{1}{2}(e_1^* \wedge e_2^* \wedge 2e_2^* + e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge 2e_2^* + e_3^* \wedge e_4^* \wedge e_3^*) = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* + e_3^* \wedge e_4^* \wedge e_3^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_3^* \wedge e_4^* \wedge e_2^* = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_3^* \wedge e_3^* \wedge e_4^* \wedge e_3^* + e_3^* \wedge e_3^* + e_3^* \wedge e_3^* \wedge e_3^* \wedge e_3^* + e_3^* \wedge e_3^* \wedge e_3^* \wedge e_3^* + e_3^* \wedge e_3$ $\frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^* + e_2^* \wedge e_3^* \wedge e_4^*.$

Therefore $\omega \wedge \eta(e_2, e_3, e_4) = \frac{1}{2}e_1^* \wedge e_2^* \wedge e_3^*(e_2, e_3, e_4) + e_2^* \wedge e_3^* \wedge e_4^*(e_2, e_3, e_4) = 0 + 1 = 1.$ (4) (15 pts) Let $U = \{(x, y) \in \mathbb{R}^2 | i \text{ such that } 0 < x^2 + y^2/4 < 1, y > 0, -y/2 < x < y/2.$ Compute $\int_{U} y$.

Hint: use the appropriate change of variables.

Solution

First we make the change of variables y = 2v, x = u, i.e. f(u, v) = u, 2v. Then det[df] = 2 and hence by the change of variables formula $\int_U y = \int_V 2 \cdot 2v = \int_V 4v$ where $V = \{(u, v) \in \mathbb{R}^2 | \text{ such that } 0 < u^2 + v^2 < 1, y > 0, -v < u < v \}$. making another change of coordinates $u = r \cos \theta$, $v = r \sin \theta$ or $g(r, \theta) = (r \cos \theta, r \sin \theta)$ we see that $\det[dg] = r$ and $\int_V 4v = \int_W 4r \cdot r \sin \theta = \int_W 4r^2 \sin \theta$ where $W = \{0 < r < 1, \pi/4 < \theta < 3\pi/4\}$. By Fubini's theorem we compute

$$\int_{W} 4r^{2} \sin \theta = \int_{\pi/4}^{3\pi/4} (\int_{0}^{1} 4r^{2} \sin \theta dr) d\theta = \int_{\pi/4}^{3\pi/4} \frac{4}{3} \sin \theta d\theta = -\frac{4}{3} \cos \theta \Big|_{\pi/4}^{3\pi/4} = \frac{4\sqrt{2}}{3}$$

(5) (15 pts) Let $v_1, \ldots v_{n-1}$ be vectors in \mathbb{R}^n .

Show that $v_1 \times v_2 \times \ldots \times v_{n-1} = 0$ if $v_1, \ldots v_{n-1}$ are linearly dependent.

Solution

Let $v = v_1 \times v_2 \times \ldots \times v_{n-1}$. By definition,

$$\langle v, w \rangle = \det \begin{pmatrix} v_1 \\ \cdots \\ v_{n-1} \\ w \end{pmatrix} = 0$$

because the rows of this matrix are linearly dependent.

Thus $\langle v, w \rangle = 0$ for any $w \in \mathbb{R}^n$. In particular for w = v we get $0 = \langle v, v \rangle = |v|^2$ which means that v = 0.

(6) (15 pts) Let e_1, e_2 be a basis of a vector space V of dimension 2. Let $T \in \mathcal{T}^2(V)$ be given by $e_1^* \otimes e_1^* + e_2^* \otimes e_2^*$.

Prove that T can not be written as $S \otimes U$ with $S, U \in \mathcal{T}^1(V)$.

Solution

Suppose $e_1^* \otimes e_1^* + e_2^* \otimes e_2^* = S \otimes U$ for some $S = ae_1^* + be_2^*$, $U = ce_1^* + de_2^*$. Then $S \otimes U = (ae_1^* + be_2^*) \otimes (ce_1^* + de_2^*) = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + ade_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + bce_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + bce_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + bce_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + bce_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^*$ $e_1^* \otimes e_1^* + e_2^* \otimes e_2^*$. This means that ac = 1, bc = 0, ad = 0, bd = 1. It's easy to see that this system has no solutions. for example, $abcd = (bc)(ad) = 0 \cdot 0 = 0$ and on the other hand, $abcd = (ac)(bd) = 1 \cdot 1 = 1$. This is a contradiction.

(7) (15 pts) Let $\omega = e^{\frac{1}{\sqrt[3]{x^2+y^2}}} dx + \frac{\cos(\frac{\pi\sqrt{x^2+y^2}}{2})}{1+e^{x^2y}} dy$ be a 1-form on $R^2 \setminus \{0\}$. let $f: R^2 \to R^2 \setminus \{0\}$ be given by $f(u, v) = (\cos(2u + v), \sin(2u + v))$. Compute $f^*(d\omega)$.

Solution

First recall that $f^*(d\omega) = df^*(\omega)$. We compute $f^*(\omega) = e^1 d \cos(2u + v) + \frac{\cos(\pi/2)}{1 + e^{\cos^2(2u+v)} \sin(2u+v)} d \sin(2u+v) = e d \sin(2u+v)$. therefore, $f^*(d\omega) = df^*(\omega) = d(e d \sin(2u+v)) = e(d \circ d) \sin(2u+v) = 0$