Solutions to Term Test 3

(1) (15 pts) Give the following definitions
(a) A k-tensor on a vector space V.
(b) Cross product on R^{n}.
(c) A partition of unity on on open set U subordinate to an open cover U_{α}.

Solution

(a) A k-tensor on a vector space V is a map $T: \overbrace{V \times \ldots \times V}^{k \text { times }} \rightarrow R$ which is linear in every variable, i.e
$T\left(v_{1}, \ldots v_{i-1}, a v_{i}^{\prime}+b v_{i}^{\prime \prime}, v_{i+1}, \ldots, v_{k}\right)=a T\left(v_{1}, \ldots v_{i-1}, v_{i}^{\prime}, v_{i+1}, \ldots, v_{k}\right)+$ $b T\left(v_{1}, \ldots v_{i-1}, v_{i}^{\prime \prime}, v_{i+1}, \ldots, v_{k}\right)$ for any $i=1, \ldots, k$.
(b) Cross product on R^{n}. For $v_{1}, \ldots v_{n-1} \in R^{n}$ we define $v_{1} \times \ldots \times v_{n}$ as the unique vector $v \in R^{n}$ such that $\langle v, w\rangle=\operatorname{det}\left(\begin{array}{c}v_{1} \\ \cdots \\ v_{n-1} \\ w\end{array}\right)$ for any $w \in R^{n}$.
(c) A partition of unity on an open set U subordinate to an open cover U_{α} is a sequence of functions $\phi_{i}: R^{n} \rightarrow R$ with the following properties
(i) ϕ_{i} is C^{∞} for any i.
(ii) For any i there exists α such that $\operatorname{supp}\left(\phi_{i}\right) \subset U_{\alpha}$
(iii) $\phi_{i} \geq 0$ for any i.
(iv) for any $p \in U$ there exists $\epsilon>0$ such that $B(p, \epsilon)$ intersects only finitely many $\operatorname{supp}\left(\phi_{i}\right)$.
(v) $\sum_{i=1}^{\infty} \phi_{i}=1$ on U.
(2) (10 pts) Let $U \subset R^{n}$ be open. Let $f, g: U \rightarrow R$ be continuous and $|f| \leq g$. Suppose $\int_{U}^{e x t} g$ exists.
Prove that $\int_{U}^{e x t} f$ also exists.

Solution

Let ϕ_{i} be a partition of unity on U. Then by definition of extended integral, $\sum_{i=1}^{\infty} \int_{U}|g| \phi_{i}<\infty$
Therefore
$\sum_{i=1}^{\infty} \int_{U}|f| \phi_{i} \leq \sum_{i=1}^{\infty} \int_{U}|g| \phi_{i}<\infty$ and hence $\int_{U}^{e x t} f$ exists by the definition.
(3) (15 pts) Let $e_{1}, e_{2}, e_{3}, e_{4}$ be a basis of a 4-dimensional space V.

Let $\omega=\operatorname{Alt}\left(e_{1}^{*} \otimes e_{2}^{*}+e_{3}^{*} \otimes e_{4}^{*}\right)$ and $\eta=2 e_{2}^{*}+e_{3}^{*}$.
Find $\omega \wedge \eta\left(e_{2}, e_{3}, e_{4}\right)$.

Solution

We have $\omega=\frac{1!1!}{2!}\left(e_{1}^{*} \wedge e_{2}^{*}+e_{3}^{*} \wedge e_{4}^{*}\right)$. Hence $\omega \wedge \eta=\frac{1}{2}\left(e_{1}^{*} \wedge e_{2}^{*}+e_{3}^{*} \wedge e_{4}^{*}\right) \wedge\left(2 e_{2}^{*}+e_{3}^{*}\right)=$ $\frac{1}{2}\left(e_{1}^{*} \wedge e_{2}^{*} \wedge 2 e_{2}^{*}+e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}+e_{3}^{*} \wedge e_{4}^{*} \wedge 2 e_{2}^{*}+e_{3}^{*} \wedge e_{4}^{*} \wedge e_{3}^{*}\right)=\frac{1}{2} e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}+e_{3}^{*} \wedge e_{4}^{*} \wedge e_{2}^{*}=$ $\frac{1}{2} e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}+e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}$.

Therefore $\omega \wedge \eta\left(e_{2}, e_{3}, e_{4}\right)=\frac{1}{2} e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}\left(e_{2}, e_{3}, e_{4}\right)+e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}\left(e_{2}, e_{3}, e_{4}\right)=0+1=1$.
(4) (15 pts) Let $U=\left\{(x, y) \in R^{2} \mid\right.$ such that $0<x^{2}+y^{2} / 4<1, y>0,-y / 2<x<y / 2$. Compute $\int_{U} y$.
Hint: use the appropriate change of variables.

Solution

First we make the change of variables $y=2 v, x=u$, i.e. $f(u, v)=u, 2 v$. Then $\operatorname{det}[d f]=2$ and hence by the change of variables formula $\int_{U} y=\int_{V} 2 \cdot 2 v=\int_{V} 4 v$ where $V=\left\{(u, v) \in R^{2} \mid\right.$ such that $\left.0<u^{2}+v^{2}<1, y>0,-v<u<v\right\}$. making another change of coordinates $u=r \cos \theta, v=r \sin \theta$ or $g(r, \theta)=(r \cos \theta, r \sin \theta)$ we see that $\operatorname{det}[d g]=r$ and $\int_{V} 4 v=\int_{W} 4 r \cdot r \sin \theta=\int_{W} 4 r^{2} \sin \theta$
where $W=\{0<r<1, \pi / 4<\theta<3 \pi / 4\}$. By Fubini's theorem we compute

$$
\int_{W} 4 r^{2} \sin \theta=\int_{\pi / 4}^{3 \pi / 4}\left(\int_{0}^{1} 4 r^{2} \sin \theta d r\right) d \theta=\int_{\pi / 4}^{3 \pi / 4} \frac{4}{3} \sin \theta d \theta=-\left.\frac{4}{3} \cos \theta\right|_{\pi / 4} ^{3 \pi / 4}=\frac{4 \sqrt{2}}{3}
$$

(5) (15 pts) Let $v_{1}, \ldots v_{n-1}$ be vectors in R^{n}.

Show that $v_{1} \times v_{2} \times \ldots \times v_{n-1}=0$ if $v_{1}, \ldots v_{n-1}$ are linearly dependent.

Solution

Let $v=v_{1} \times v_{2} \times \ldots \times v_{n-1}$. By definition,

$$
\langle v, w\rangle=\operatorname{det}\left(\begin{array}{c}
v_{1} \\
\ldots \\
v_{n-1} \\
w
\end{array}\right)=0
$$

because the rows of this matrix are linearly dependent.
Thus $\langle v, w\rangle=0$ for any $w \in R^{n}$. In particular for $w=v$ we get $0=\langle v, v\rangle=|v|^{2}$ which means that $v=0$.
(6) (15 pts) Let e_{1}, e_{2} be a basis of a vector space V of dimension 2. Let $T \in \mathcal{T}^{2}(V)$ be given by $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}$.

Prove that T can not be written as $S \otimes U$ with $S, U \in \mathcal{T}^{1}(V)$.

Solution

Suppose $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}=S \otimes U$ for some $S=a e_{1}^{*}+b e_{2}^{*}, U=c e_{1}^{*}+d e_{2}^{*}$. Then $S \otimes U=\left(a e_{1}^{*}+b e_{2}^{*}\right) \otimes\left(c e_{1}^{*}+d e_{2}^{*}\right)=a c e_{1}^{*} \otimes e_{1}^{*}+b c e_{2}^{*} \otimes e_{1}^{*}+a d e_{2}^{*} \otimes e_{1}^{*}+b d e_{2}^{*} \otimes e_{2}^{*}=$ $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}$. This means that $a c=1, b c=0, a d=0, b d=1$. It's easy to see that this system has no solutions. for example, $a b c d=(b c)(a d)=0 \cdot 0=0$ and on the other hand, $a b c d=(a c)(b d)=1 \cdot 1=1$. This is a contradiction.
(7) (15 pts) Let $\omega=e^{\frac{1}{\sqrt[3]{x^{2}+y^{2}}}} d x+\frac{\cos \left(\frac{\pi \sqrt{x^{2}+y^{2}}}{2}\right)}{1+e^{x^{2} y}} d y$ be a 1 -form on $R^{2} \backslash\{0\}$. let $f: R^{2} \rightarrow R^{2} \backslash\{0\}$ be given by $f(u, v)=(\cos (2 u+v), \sin (2 u+v))$. Compute $f^{*}(d \omega)$.

Solution

First recall that $f^{*}(d \omega)=d f^{*}(\omega)$. We compute $f^{*}(\omega)=e^{1} d \cos (2 u+v)+$ $\frac{\cos (\pi / 2)}{1+e^{\cos ^{2}(2 u+v) \sin (2 u+v)}} d \sin (2 u+v)=e d \sin (2 u+v)$. therefore, $f^{*}(d \omega)=d f^{*}(\omega)=$ $d(e d \sin (2 u+v))=e(d \circ d) \sin (2 u+v)=0$

