Past Final Exam

- 1. (12 pts) Give the following definitions
 - (a) an open set in \mathbb{R}^n .
 - (b) a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ at a point p.
 - (c) an integrable function f on a rectangle $A \subset \mathbb{R}^n$.
 - (d) an alternating k-tensor on a vector space V.
 - (e) a k-dimensional manifold in \mathbb{R}^n .
- 2. (10 pts) Let A be a rectangle in \mathbb{R}^n . Suppose $f, g: A \to \mathbb{R}$ are integrable on A. Prove that f + g is also integrable on A.
- 3. (10 pts) Let A be a subset of \mathbb{R}^n . Prove that $A \cup br(A)$ is closed.
- 4. (8 pts) Let C ⊂ Rⁿ be compact. Let f: C → R be continuous.
 Prove that f(C) is bounded. You are not allowed to use any theorems about compact sets in the proof.
- 5. (10 pts) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x, y) = |xy|. Show that f is differentiable at (0, 0) and compute df(0, 0).
- 6. (8 pts) Let V be an n-dimensional vector space and $\langle \cdot, \cdot \rangle$ be an inner product on V. Let e_1, \ldots, e_n be an orthonormal basis of V. Recall that we use the following notation. For $I = (i_1, \ldots, i_k)$ where $1 \leq i_j \leq n$ denote $e_I^* = e_{i_1}^* \otimes \ldots \otimes e_{i_k}^*$.

Prove that $\{e_I\}_{I=(i_1,\ldots,i_k)}$ are linearly independent.

7. (10 pts) Let $f = f^1(x, y), f^2(x, y)$: $\mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 map satisfying

 $f(x,0) = (\cos x, x), f(0,y) = (1+y, \sin y)$

Prove that for some open set U containing (0,0) the set V = f(U) is open and $f: U \to V$ is a diffeomorphism and compute $d(f^{-1})(1,0)$.

8. (10 pts) Let $U = \{(x, y) \in \mathbb{R}^2 | \text{ such that } x > 1, 1 < y < 2\}$. Let $f: U \to \mathbb{R}$ be given by $f(x, y) = \frac{1}{xy}$.

Does $\int_U^{ext} f$ exist? If yes, compute it, if not, explain why not. Give a careful justification of your answer.

- 9. (12 pts) Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$ be a 2-form on $U = \mathbb{R}^3 \setminus (0, 0, 0)$. One can check that $d\omega = 0$. You DO NOT have to verify that.
 - (a) Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + y^2 + z^2 = 1\}$ with the orientation induced from $B^3 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + y^2 + z^2 \leq 1\}$. Show that $\omega|_{S^2} = dV$
 - (b) Show that ω is not exact on U. Hint: Assume that $\omega = d\eta$ and use Stokes' formula.
- 10. (10 pts) Let U be the parallelogram with vertices (0,0), (2,1), (1,3) and (3,4). Compute $\int_U x + 2y$.