(1) Let Q be a rectangle in \mathbb{R}^n and let $A \subset Q$ be a subrectangle. Let $f: Q \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ if } x \notin A \end{cases}$$

Prove that $\int_O f$ exists and $\int_O f = \operatorname{vol}(A)$.

- (2) A set $S \subset \mathbb{R}^n$ is said to have *content* zero if for any $\epsilon > 0$ there exists a finite collection of rectangles Q_i covering S such that $\sum_i \operatorname{vol}(Q_i) < \epsilon$.
 - (a) Show that if $S \subset Q \subset \mathbb{R}^n$ has content zero then any bounded function $f: Q \to \mathbb{R}$ such that f(x) = 0 if $x \notin S$ is integrable over Q and $\int_Q f = 0$.
 - (b) Let $S \subset Q \subset \mathbb{R}^n$ have content zero. let $f, g: Q \to \mathbb{R}$ be bounded and satisfy f(x) = g(x) if $x \notin S$. Prove that $\int_Q f$ exists if and only if $\int_Q g$ exists and if they both exist $\int_Q f = \int_Q g$.
 - (c) Show that a finite union of sets of content zero has content zero.
 - (d) let Q be a rectangle in \mathbb{R}^n show that bd(Q) has content zero.
 - (e) Show that if S has content zero then its closure Cl(S) also has content zero.
 - (f) Show that $S = \mathbb{Q} \cap [0, 1] \subset \mathbb{R}$ does not have content zero. Here \mathbb{Q} is the set of rational numbers.
- (3) let $f: Q \to R$ be integrable over Q. let $c \in R$ be a constant. Prove that cf is also integrable over Q and $\int_Q cf = c \int_Q f$.

Note: The proof depends on the sign of c.

Consider the Cantor set S on [0,1] constructed as follows. Let S_1 be obtained from [0,1] by removing the open interval (1/3, 2/3). Let S_2 be obtained from S_1 by further removing middle intervals (1/9, 2/9) and (7/9, 8/9) out of S_1 etc. Let $S = \bigcap_{i=1}^{\infty} S_i$ be the Cantor set. Show that S has content zero.

(4) Let $f: [0,1] \to R$ be defined as follows

 $f(x) = \begin{cases} 1/q \text{ if } x = p/q \text{ where p,q are positive integers with no common factor} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$

Show that f is integrable on [0, 1].

(5) Let $f: \mathbb{R}^n \to \mathbb{R}$ be integrable. The graph of f is the set $\Gamma_f = \{(x, y) \in \mathbb{R}^{n+1} | \text{ such that } y = f(x) \}.$

Show that Γ_f has measure zero.

Hint: Use the definition of integrability of f.

(6) Let Q be a rectangle in \mathbb{R}^n covered by countably many rectangles Q_i .

$$Q \subset \bigcup_{i=1}^{\infty} Q_i$$

Prove that

$$\mathrm{vol}Q \leq \sum_{i=1}^{\infty} \mathrm{vol}Q_i$$

Hint: Substitute Q_i by slightly bigger rectangles Q'_i such that $Q_i \subset int(Q'_i)$ and use compactness of Q.

 $\mathbf{2}$