
MAT 257Y Solutions to Term Test 1

(1) (15 pts) Let (X, d) be a metric space. Let A ⊂ X
be a compact subset. Using only the definition of
compactness prove that A is closed.

Solution

Let U = X\A. We need to show that U is open.
Let p ∈ U . Let Un = {x ∈ X| such that d(x, p) >
1/n}. Then Un is open. Indeed, let x ∈ Un. Then
d(x, p) > 1/n. Choose ε > 0 such that d(x, p) − ε >
1/n. Then B(x, ε) ⊂ Un by the triangle inequality.
Hence Un is open. Next note that ∪n∈NUn = X\{p}
covers A. By compactness of A we can find a finite
subcover Un1

, . . . , Unk
covering A where n1 < n2 <

. . . < nk. Then ∪k
j=1Unj

= Unk
contains A. This

means that B(p, 1
nk

) ⊂ U and hence U is open.

(2) (10 pts) Let f : X → R be continuous at a ∈ X.
Prove that there exists δ > 0 such that f is bounded
on B(a, δ).

Solution

Choose any ε > 0. For example, take ε = 1. By
definition of continuity, there exists δ > 0 such that
|f(x) − f(a)| < ε for any x ∈ B(a, δ). This means
that for any x ∈ B(a, δ) we have |f(x)| < |f(a)|+ ε.
�

(3) (15pts) Mark True or False. If True give a proof,
if False give a counterexample.

Let (X, d) be a metric space. Let A,B ⊂ X be
subsets in X.
(a) ext(A) is open;
(b) int(A ∪B) = int(A) ∪ int(B).

Solution

(a) True. Let p ∈ ext(A). By definition of ext(A)
this means that there exists ε > 0 such that
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B(p, ε) ⊂ X\A. We claim that B(p, ε) ⊂ ext(A).
Let x ∈ B(p, ε). Tthen d(p, x) < ε. Choose δ > 0
such that d(p, x)+δ < ε. Then, by the triangle in-
equality, B(x, δ) ⊂ B(p, ε) ⊂ X\A. This means
that B(p, ε) ⊂ ext(A) and hence ext(A) is open.

(b) False. For example, take X = R, A = [0, 1] and
B = [1, 2]. then int(A) = (0, 1), int(B) = (1, 2)
and int(A ∪B) = (0, 2) 6= (0, 1) ∪ (1, 2).

(4) (15 pts) Find expressions for the partial derivatives
of the following functions
(a) F (x, y) = f(g(x)k(y), h(x) + 2k(y))

(b) F (x, y) =
∫ 1

k2(x)h(y) g(t)dt

Solution

(a) Let f = f(t1, t2). Then, by the chain rule we
have

∂F

∂x
(x, y) =

∂f

∂t1
(g(x)k(y), h(x) + 2k(y)) · ∂(g(x)k(y))

∂x
+

+
∂f

∂t2
(g(x)k(y), h(x) + 2k(y)) · ∂(h(x) + k(y))

∂x
=

=
∂f

∂t1
(g(x)k(y), h(x)+2k(y))·g′(x)k(y)+

∂f

∂t2
(g(x)k(y), h(x)+2k(y))·h′(x)

Similarly,

∂F

∂x
(x, y) =

=
∂f

∂t1
(g(x)k(y), h(x)+2k(y))·g(x)k′(y)+

∂f

∂t2
(g(x)k(y), h(x)+2k(y))·2k′(y)

(b) Let a(x, y) = k2(x)h(y) and f(a) =
∫ 1

a g(t)dt.
Then F (x, y) = f(a(x, y)). Note that f ′(a) =
−g(a) by the Fundamental Theorem of Calculus.
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By the chain rule,

∂F

∂x
(x, y) =

∂f

∂a
(a(x, y)) · ∂a

∂x
= f ′(k2(x)h(y)) · 2k(x)h(y) =

= −g(k2(x)h(y)) · 2k(x)h(y)

Similarly,

∂F

∂y
(x, y) = −g(k2(x)h(y)) · k2(x)h′(y)

(5) (20 pts) Let f : R2 → R be given by

f(x, y) =

{
xy√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(a) Is f continuous at (0, 0)?
(b) Do D1f and D2f exist at (0, 0)?
(c) Is f differentiable at (0, 0)?

Solution

(a) Is f continuous at (0, 0)? We can rewrite f(x, y) =
x · y√

x2+y2
where lim(x,y)→0 x = 0 and | y√

x2+y2
| ≤

1. Therefore,

lim
(x,y)→0

f(x, y) = 0 = f(0, 0)

Which means that f is continuous at (0, 0).
Answer: Yes.

(b) Do D1f and D2f exist at (0, 0)?
Observe that f(x, 0) = 0 and f(0, y) = 0 for
any x and any y. Therefore D1f(0, 0) = 0 =
D2f(0, 0).
Answer: Yes, bothe partial derivatives ex-
ist at (0, 0).

(c) Is f differentiable at (0, 0)? If f were differen-
tiable at 0 then all directional derivatives at (0, 0)
would exist too. Let v = (1, 1) Then Dvf(0, 0) =
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f(tv)′(0) but f(tv) = t2√
t2+t2

= |t|2√
2|t| = 1√

2
|t| has

no derivative at 0. Hence Dvf(0, 0) does not exist
and hence f is not differentiable at (0, 0).
Answer: No.

(6) (10 pts) Let f : R2 → R2 be given by f(x, y) =
(xy, ex + y).

Show that there exists an open set U containing
(0, 1) such that V = f(U) is open, f is 1-1 on U and
g = f−1 : V → U is differentiable on V .

Compute dg(0,2).

Solution

F is clearly C1 on R2. We compute the matrix of
df(x,y). It is given by(

∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

)
=

(
y x
ex 1

)
Therefore, the matrix of df0,1) is(

1 0
1 1

)
It has det = 1 6= 0 and hence it’s invertible. By the
Inverse Function Theorem, there exists an open set
U containing (0, 1) such that V = f(U) is open, f is
1-1 on U and g = f−1 : V → U is differentiable on V .
Observe that f(0, 1) = (0, 2). Again, by the Inverse
Function theorem, the matrix of dg(0,2) is given by(

1 0
1 1

)−1

=

(
1 0
−1 1

)
(7) (15 pts) Let M(n) be the set of all real n×n matrices

identified with Rn2

. Let O(n) ⊂ M(n) be the set of
all orthogonal matrices. Recall that an n× n matrix
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is called orthogonal if A · At = At · A =Id where At

is the transpose of A.
(a) Prove that O(n) is closed.
(b) Prove that O(n) is bounded.

Solution

(a) Consider the map f : M(n) → M(n) given by
f(A) = A·At. Then f is clearly continuous as the
entries of f(A) are polynomials in Aij’s. By defi-
nition, O(n) = f−1({Id}). Since {Id} ⊂M(n) is
closed we conclude that O(n) is also closed as a
preimage of a closed set under a continuous map.

(b) Note that ||A|| =
√∑

i,j A
2
i,j for any A ∈ M(n).

Let A ∈ O(n). We are given that A · At = Id.
Observe that the i-th column of At is the ith row
of A. Multiplying the i-th row of A by the i-th
column of At this gives 1 =

∑
j A

2
i,j. Adding the

above equations for all i’s this gives
∑

i

∑
j A

2
i,j =

n. This means that ||A|| =
√
n for any A ∈ O(n)

and hence O(n) is bounded.
Note that taken together (a) and (b) mean that
O(n) is compact.


