Practice test

- (1) Give the definitions of the following notions.
 - (a) an open set in \mathbb{R}^n ;
 - (b) a boundary point of a set $A \subset \mathbb{R}^n$;
 - (c) a function $f: \mathbb{R}^n \to \mathbb{R}^m$ differentiable at a point p;
 - (d) a directional derivative of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point p.
- (2) Find the partial derivatives of the following functions (a)

$$f(x,y) = \int_{x}^{\int_{x}^{y} g(t)dt} g(t)dt$$

Hint: put $F(x,y) = \int_x^y g(t)dt$ and express f as a composition. (b) $f(x,y) = \ln(\sin(x+y^2)^{\cos 2x})$

- (3) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by the formula

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) Show that f(x, y) is continuous at (0, 0).
- (b) Show that f has partial derivatives at (0,0).
- (c) Does f has directional derivatives at (0,0) in all directions?
- (d) Show that f is not differentiable at (0,0).
- (4) Show that a compact subset of \mathbb{R}^n is bounded.
- (5) let $f(x,y) = x^2 + 5y^2 4xy 2y$. Find all possible points of minimum of f(x,y).
- (6) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous.

Are the following statements true or false? Prove if true and give counterexamples if false.

- (a) If $A \subset \mathbb{R}^n$ is closed and bounded then f(A) is closed and bounded.
- (b) If $A \subset \mathbb{R}^n$ is closed then f(A) is closed.
- (c) If $A \subset \mathbb{R}^n$ is bounded then f(A) is bounded.
- (7) Let GL(n, R) be the set of all $n \times n$ invertible matrices. Show that GL(n, R) is open in R^{n^2} .