Solutions to selected problems from homework 1

(1) Problem 1.1.6 from the book.

(1)

(i) Let us parameterize the ellipse $\frac{x^2}{p^2} + \frac{y^2}{q^2} = 1$ (where p > q > 0) as $\gamma(t) = (p \cos t, q \sin t)$. Let $\varepsilon = \sqrt{1 - \frac{q^2}{p^2}}$. And let $F_+ = (\varepsilon p, 0), F_- = (-\varepsilon p, 0)$ be the foci of the ellipse. Note that F_+, F_- lie inside the ellipse because $\varepsilon < 1$. Let $v_{\pm} = \gamma(t) - F_{\pm}$ and let $d_{\pm} = |v_{\pm}|$ be the distance from $\gamma(t)$ to F_{\pm} . We will compute d_+ (the computation of d_- is identical. We have $v_+ = (p \cos t - \varepsilon p, q \sin t)$. Therefore, $d_+ = \sqrt{(p \cos t - \varepsilon p)^2 + q^2 \sin^2 t} = p\sqrt{(\cos t - \varepsilon)^2 + \frac{q^2}{p^2} \sin^2 t} = p\sqrt{\cos^2 t - 2\varepsilon \cos t + \varepsilon^2 + (1 - \varepsilon^2) \sin^2 t} = p\sqrt{\cos^2 t - 2\varepsilon \cos t + \varepsilon^2 + \sin^2 t - \varepsilon^2 \sin^2 t} = p\sqrt{1 - 2\varepsilon \cos t + \varepsilon^2(1 - \sin^2 t)} = p\sqrt{1 - 2\varepsilon \cos t + \varepsilon^2(1 - \sin^2 t)} = p\sqrt{1 - 2\varepsilon \cos t + \varepsilon^2 \cos^2 t} = p\sqrt{(1 - \varepsilon \cos t)^2} = p(1 - \varepsilon \cos t).$ Likewise, $d_- = p(1 + \varepsilon \cos t)$ and hence $d_+ + d_- = p(1 - \varepsilon \cos t) + p(1 + \varepsilon \cos t) = 2p$ is independent of t.

(ii) We have that $\gamma'(t) = (-p \sin t, q \cos t)$. Observe that $N(t) = (q \cos t, p \sin t)$ is perpendicular to $\gamma'(t)$. Then $n(t) = \frac{N(t)}{|N(t)|}$ is a unit normal to $\gamma'(t)$. The distance h_{\pm} from F_{\pm} to the tangent line at t is equal to $h_{\pm} = |\langle |v_{\pm}, n(t) \rangle|$. Therefore,

$$h_+ \cdot h_- = \frac{|\langle v_+, N(t) \rangle \cdot \langle v_-, N(t) \rangle|}{|N(t)|^2}$$

We first compute the denominator: $|N(t)|^2 = q^2 \cos^2 t + p^2 \sin^2 t = p^2 (\frac{q^2}{p^2} \cos^2 t + \sin^2 t) = p^2 ((1 - \varepsilon^2 \cos^2 t + \sin^2 t)) = p^2 (1 - \varepsilon^2 \cos^2 t).$ Next, let's compute the numerator $|\langle v_+, N(t) \rangle \cdot \langle v_-, N(t) \rangle| = |\langle (p \cos t - \varepsilon p, q \sin t), (q \cos t, p \sin t) \rangle \cdot \langle (p \cos t + \varepsilon p, q \sin t), (q \cos t, p \sin t) \rangle| = |(pq(\cos t - \varepsilon) \cos t + pq \sin^2 t) \cdot (pq(\cos t + \varepsilon) \cos t + pq \sin^2 t)| = p^2 q^2 |(\cos^2 t - \varepsilon \cos t + \sin^2 t)| = p^2 q^2 (1 - \varepsilon \cos t) (1 + \varepsilon \cos t) = p^2 q^2 (1 - \varepsilon^2 \cos^2 t).$ Plugging the above formulas into (1) we get

$$h_{+} \cdot h_{-} = \frac{p^2 q^2 (1 - \varepsilon^2 \cos^2 t)}{p^2 (1 - \varepsilon^2 \cos^2 t)} = q^2$$

which is independent of t.

(iii) We need to show that the two lines through the foci and $\gamma(t)$ make equal angles with the tangent line at $\gamma(t)$. This is equivalent to showing that $|\sin \angle v_+ \gamma'(t)| = |\sin \angle v_- \gamma'(t)|$.

Recall that for any vectors u, v in \mathbb{R}^2 we have that $|u \times v| =$ $|\det \begin{pmatrix} u \\ v \end{pmatrix}| = |u| \cdot |v| \cdot |\sin \angle uv|.$ Applying this to $u = \gamma'(t), v = v_+$ we get $|\gamma'(t) \times v_{+}| = |(-p\sin t, q\cos t) \times (p\cos t - \varepsilon p, q\sin t)| = |$ $pq\sin^2 t - pq\cos t(\cos t - \varepsilon)| = pq(1 - \varepsilon\cos t).$ Recall that by part i) we know that $|v_+| = d_+ = p(1 - \varepsilon \cos t)$. Therefore, $|\sin \angle \gamma'(t)v_+| = \frac{pq(1-\varepsilon \cos t)}{|\gamma'(t)|p(1-\varepsilon \cos t)} = \frac{q}{|\gamma'(t)|}$. An identical computation also shows that $|\sin \angle \gamma'(t)v_-| = \frac{q}{|\gamma'(t)|}$ which

finally gives that

 $|\sin \angle \gamma'(t)v_+| = |\sin \angle \gamma'(t)v_-|.$

(2) Let $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ be a regular curve. Prove that for any $t_0 \in (\alpha, \beta)$ there is a small $\epsilon > 0$ such that the image $\gamma(t_0 - \epsilon, t_0 + \epsilon)$ can be written as the level set f(x, y) = c where f is smooth and c is a regular value.

Solution

Let $\gamma(t) = (x(t), y(t))$. By the assumption $\gamma'(t_0) = (x'(t_0), y'(t_0)) \neq$ 0.

Suppose $x'(t_0) \neq 0$ (the other case is handled similarly).

Then by the inverse function theorem x = x(t) is invertible near t_0 and we can solve t = t(x). Using this change of variable we can reparameterize γ near t_0 as $x \mapsto \gamma(t(x)) = (x, y(t(x)))$. In other words near t_0 our curve is the graph of y = h(x) where h = y(t(x)).

Set f(x,y) = y - h(x). Then the graph of h is equal to the level set $\{f=0\}$ and 0 is clearly a regular value of f since $\nabla f = (-h'(x), 1) \neq 0$ 0 for any $(x, y) \in \{f = 0\}$.